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THEORETICAL PREDICTION OF PRESSURE DISTRIBUTIONS ON NONLIFTING
HIGH SUBSONIC SPEEDS I

By JOHN R. SPREITER and ALBERTA ALKSNE

AIRFOILS AT

SUMMARY

I'h_.+'etical pressure distributions on nonl_fting circular-arc

rlbJ,/ls in two-dilnensional flows with high subsonic free-stream

reIocily are jou_d by determ'b_ing approxinmle solutions, through

(tt_ iteralinn, proee,_s, of an integral equation for transonic flow

propo.wd by O._wat;t._cb. The integral equation stems directly

from the small-di._lurbance theory .[or tral_sonic flow. This

mdbod ,f analy.sis pos,se._._'e._the advantage of remaining in tt_e
phy._.ical, rather that_ the hodograph, variables and can be applied

t, aic/oils having curved .,u@tees. After di.s'cussion of the deriva-

tion of the integral equati,, a_d qualitative aspects (_ the solu-

tion, res_dts _ calculatio_,_ carried ont.(or circular-arc airfoils in

flo,,._ with free-stream :linch mtmber,_ up to unity are de,_cribed.

Tl_e._e r_._ults indicate n,_._t of the pri,clpal pheJ_omena observed

i. e.rperimenhd stymie,,'. .it ,s,bcrilic_d M_lch numbers, the pres-

._'ure di,_'tribution is s_lmmetr;eal about the midehord position and

the drag is zern. The mag1_/htde _( the pressure coefficient i,_
[ound to i.erea,_'e more rapidly with increasing AIach number
tl, aa tt_e l'randtl-Gla+tert r.le would i_Micate. When the cri.tical

.ifaeh .umber is exceeded, eompre,_.don shocks occur, the fore-

aiM-aft symmetry qf the pre._sure distribution is lost, and the air-

f.;l e:rpeeie_wes a drag.force. ..is the 5Iach number is increased

.furl/.+, the stwek wa_e b_eomes oJ greater intensity and moves

rearward ab ng the chord, tt,erebg producing a rapid increase in

the magt_itude r( the pre,_'s_tre drag coe_eient. At ]tIach num-
bers clo,se to n_ritg, tt_e vtn'iation Of the pressure, local _laeh,

.amber, and drag cow,forms, within the limitations <( transonic

,_mall pertu, rbatio_t theory, to the known trends associated with

tbe ;_la<'h number freeze. Some comparisons with experimental
r<_._ldl,_.re also included.

Tlle ,_.b_tions are obtained using an iteration process which

d(tfers from the cla,_sieal methods in that the quadratic nature

qf the b, legral equation is recognized. IJ the iteration calcula-

_;o.,_ arc ,_tarted u._ing the linear-theory solution, it is shown that
th,e fete.tic, oj the quadratic.feature has the interesting effect oJ

.forbidding shoele-fi'ee supercritical second-order solutions. In

order to obtain ,_'olutions for supercritical Mach numbers, it is

necessary to start the iteration calculations with a velocity or

pressure di._tribution which contains a compression shock. When

this ks done, it is found that the iteration procedure converges to

a defi_dte re,_nlt.

Supersedes NACA TN 3096 by .lohn R. Spreiter and Alberta Alksne, March 1954.

INTRODUCTION

The theoretical problem of lransonic flow about thin

wings has been discussed by numerous authors in recent

years. Since the basic equations are nonlinear and of mixed

type, the diiti(.ullics are great, and progress has been made

only through exl)enditure of consideratde effort. At firsl,
only the basic equations an<l the similarity rules were estab-

lished. (See refs. 1 through 12.) Move recently, a small
number of actual solutions have I)ccn (h,termine(l. At the

present time, the most complete theorclicaI resulis are [hose

of Guderley and Yosllihara, Vincenli and Wagoner, (!ole, and

Trilling (r(,fs. 13 through lS) for the tlow al)out wedge air-

foils at both subsonic and supersonic speeds. These wcrc

all obtained by transforming the eqmltions to ho,lograph

variables w|lereby the differential equation t)ecomcs linear

although still of naixc<l type. Supcrposilion of solutions is
then l)ossible, but tile 1)oun<lary con(litions generally t)ecome

very coml)licated. Tl is l)ecause of the latter difficulty that

all the solutions mentione<l allove are for wedge sections.

A further (lisadvantagc of the hodograph method is that

it is definitely rcstrictcd to two-dimensional flows, there

being no known transformation which linearizes the equa-

tion for three-dimensional compressible flows.

If the hodogral)h (xanst'ormation is not inh'oduced, there
are available no direct mctho<ls of solution. Itowever,

various iteration methods have l>een used to study flows

with Iligh subsonic free-stream velocities. (See ref. 19 for

a r6sum6.) Almost all these account for the compressibility

effects by source distributions t,hroltghout the flow field and

start with either the solution for ineoint)ressible flow or for

linearized compressible flow as the first approximation. A

second approximation is calculated from the first amt so on.

It was not found possible, however, to iterate starting with

a typical shock-free subsonic flow solution amt obtain a

typical transonic flow rich[ in wt,ich the supersonic region
ends with a shock.

Oswatitsch has presented another method in references

20 and 21 for determining the transonic I)ressure distribution

on thin airfoils in flows with subsonic, free-stream velocity.

The analysis is carried out in the physical rather than the
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hodograph variables, and leads to a nonlinear integral equa-
tion in which the unknown velocity appears outside as well

as inside the integral. Oswatitsctl finds approximate solu-
tions not by iteration, but by introducing various functions

containing undetermined parameters into tim integral equa-
tion and by determining the parameters so that the integral

equation is satisfied at a small numl)er of points on the air-

foil. The method is applied to determine the pressure dis-

tribution on circular-arc and NACA symmetrical four-digit
airfoils. The results show certain ('haracteristics of transonic

flow such as the appearance of shock waves and t heir rearward
movement across the chord with increasing Math number.

It is disconcerting, however, that the me(lind fails to give

proper results at high subsonic Mach imlnbers (greater than
about 0.88 for 6-l)ercent-thiek circular-arc sections), pro-

vides a multiplicity of solutions at supercriti('al Math num-

bers, and permits the integral equation to be satisfied at

only a very limited number of points.
Tim present work is based on the integral equation of

Oswatitsch but an iteration process is used to obtain approx-

imate solutions. Tiffs procedure permits the integral equa-

tion to be satisfied at a much larger number of points than

in the original method of Oswatitsctb gives approximate
solutions at all Mach numbers up to unity, and appears to

avoid any multiplicity of solutions. The metho<l is applied

to determine tire theoretical pressure distribution on sym-

metrical circular-arc airfoils at zero angle of attack. Except

for phenomena ttmt are primarily of viscous origin, such as

t>oundary-layer separation, etc., these results exhibit most

of the experimentally observed featm'es of transonic flows.

Attention is also called to reference 22 by Gullstrand, an

associate of Oswatitsch, in which transonic flows about thin
air foils are investigated by still another extension of Oswa-

titsch's integral-equation theory. Gullstrand sought to

determine approximate solutions by iteration, although his

procedure differs considerably from that described herein.

His method, however, succeeded in determining solutions

only when the Mach number was less than about 0.90 for

6-percent-thick sections. Results were given for the pressure

distribution at sonic speed in a second paper by Gulls(rand

(ref. 23), but they were obtained by introducing a new and
more complicated integral equation than that of Oswatitsch

used herein. In contrast to tim present analysis in which

the entire solution is obtained from tile integral equation,

Gullstrand uses the integral equation to determine only the
sohltion for the forward part of the airfoil and uses the

method of characteristics to complete the solution for the

rear of the airfoil. Further work of Gulls(rand is presented
in references 24 and 25.

A list of symbols is contained in Appendix A.

BASIC EQUATIONS

The basic equations necessary for the discussion of inviseid

transonic flow consist of a set of partial differential equations
relating the velocity components and their gradients at every

point, together with the auxiliary relation giving the velocity
jump through a shock wave For thin airfoils inclined at

zero or small angles of attack, the differential equations can

be simplified by assuming that tile shock waves are sufficient-

ly weak that the flow is irrotational and isentropic, thereby

permitting the introduction of a velocity potential ,I). The

quasi-linear partial differential equation satisfied by 4_ can

be expressed in the form

(a2--(P2) (P_-_-(a2--(P_ _) _pu_+ (a2--_ 2) _--

2_¢_-- 2(P_¢_-- 2_¢_(P_ = 0 (1)

where the subscript notation is used to indicate differentiation

and a is the local speed of sound given by the relation

a_=ag-_ t (_?+%_+¢,_-Uo_ (2)

In this latter equation Uo and ao are, respectively, the free-
stream velocity an(t the speed of sound in the free stream,

and y is the ratio of specific heats (for air, 7----1.4).

It is convenient to introduce the perturbation velocity
potential _o,wiwre

_= - U_x+_ (3)

If it is assumed that all perturbation velocities and pertur-
bation velocity gradients (represented by first and second

derivatives, respectively, of ¢) are small and that only the
first-order terms in small quantities need be retained, equa-

tion (1) simplifies to the well-known Prandtl-Glauert equa-
tion of linear theory

(4)

where the fi'ee-stream velocity is directed along the positive
x axis as shown in figure 1 and where Me= Uo/ao is the Mach

number of the free stream. It is well known that equation
(4) leads to useful results in the study of subsonic and super-

sonic flow about thin wings and slender bodies but that it is

incapable, in general, of treating transonic floes. The failure

of linear theory in the transonic range is evidenced by the

calculated values of _o_growing to such magnitude that they
can no longer be regar(led as small quantities when compared
with Uo.

z

FI<;URE I. -View of wing and coordinate system.
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Second-order theory for thin wings would involve solution

of the e<luation

(l--._Io z) _::+_:v++::----M'02 p/-}-I : : . 3+--1
L Uo + + .+ Uo- 'P'!C+'++'P=')+

(See ref. 26, p. 140.) Actually, we are interested in retaining

higher-order terms only to the extent that is necessary to

allow the study of transonic flow. Examination of the known

properties of transonic flow fields indicates that the first

term on the right can often become of importance and shouht

be retained. It is assumed in the small-disturbance theory

of transonic flow (refs. 1 through 25), however, that the re-

mainder of the hwms on the right can lie safely disregarded.

Tim simplified equation is

where

(l --Me 2)++,+++,++++=,'tlo+ Y _ 1

k _,t"2 "Y-f-1
..... _j (7)

As a result of minor differences in the perturbation analysis,

recent papers have used at least three other expressions for

k. This point will be discussed further at the conclusion of
the present section.

Equation (6) is valid only in regions where the necessary
derivatives exist and are continuous. Since these conditions

do not hold where shock waves occur, an additional equation

is needed for the transition through the shock. The neces-

sary equation is provided by the classical relation for the

shock polar (e. g., ref. 26, p. 108).

=.. . _ = . _ /L_b--a *_
+'b +u,+ =(u.- u_) 2 - (8)

where _, v, and ff_ refer to (+artesian velocity components

with _ being parallel to the flow direction ahead of the shock,

the subscripts a and b refer to conditions ahead of and behind

the shock, and a* is the critical sound velocity, which can be

expressed in terms of Uo and Me as follows:

a* /'r--1 + _ 2 ....
_rO= _/_-_ 1 AIo2('I+ 1)

(9)

The appropriate simplified equation is obtained from equa-
tion (8) by resolving the velocities into components parallel

to the axes of the coordinate system and carrying out a small-
perturbation analysis analogous to that performed in the

derivation of equation (6). In this way, the following re-

lation is found between the perturbation velocity components
on the two sides of the shock wave:

(1 -- 3,Io_)(U.-- Ub)2+ Cv,.-- V_)_+ (W.--Wb) _

Y+I/u.+ub\. -2 ./U.+U_\

(lo)

ON NONLI_rING AIRFOILS AT HIGH SUBSONIC SPEEDS 3

where u, v, and w are the perturbation velocity components

parallel to the x, y, and z axes. This equation corresponds

to the shock-polar curve for shock waves of small strength
inclined at any angle between that of normal shock waves
and that of the Mach lines. On either side of the shock

wave, the perturbation velocity components are related to

the perturbation velocity potential in the usual manner

b_ 5_ 5+o
U=bx-, v=--ay, w=---az 01)

In addition to satisfying tim differential equation and the

shock-wave equation, the perturbation potential must pro-

vide flows compatible with the following physical require-
ments: (a) the perturbation velocities must vanish far

ahead of tile wing and (b) the flow must be tangential t,o the

wing surface. Therefore, the following boundary conditions

are to be specified for the perturbation potential:

at x=--¢o

_]0=\5_]o=\5_]o- (_2)

at the wing surface W

u_ \57],,,- _ (t a)

where 5Z/bx is the local slope of tim wing surface in the x
direction. Furthermore, it is consistent with the assmnption

of small disturbances to satisfy the second boundary condi-
tion on the two sides of the xy plane rather than on the actual

wing surface. Equation (13) tiros becomes

Uo Uo f (14)

where tile shape of the wing profile is given by

7- c'7 (15)

In addit!on, it is presumed necessary to prescribe that the

direct influence of a disturbance in the supersonic region
proceeds only in the downstream direction and that the Kutta

condition applies whenever the flow velocity at the "trailing
edge is subsonic.

Upon solving the above boundary-value problem for the
potential, one may determine the pressure coefficient for

planar systems by means of the formula

Cr- p--po 2 b_ (16)
po Uo2 Uo bx
2

COMPARISON WITH OTHER STATEMENTS OF THE

TRANSONIC-FLOW EQUATIONS

As a result of minor variations in the perturbation analysis,

recent papers have used at least four different relations for k,

the coefficient of the nonlinear term in the simplified equation

for the perturbation velocity potential. As indicated in the
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preceding paragraphs, straightforward development of

second-order theory leads to tile relation

k=11lo" 7+ 1
(;o (7)

This is sonwlimes simplified (e. g., refs. 8, 10, and 12) to

k: v+l
I 'o f17)

by arguing (hal Mo can he set equal to mlity in this term

without any loss in ac('uraev since the rig|it-hand side of

equation (6) is merely an approximation 1o allow (}w ireat-
meat of transonic flows and rapidly diminishes in magnitude

as J/, departs fl'Otll miity. In SOllle treatments to. g., refs.

7 and 23), equation (1) is divided by ez_ and the quotient

l/a 2 in ea('h to,'m is expanded in a binomial series. When
this is done, the coeffi(,ient k of the lerm involving _._. is

F2+(, - 1)M, _]k:3f°2 L l _o

Still .nether expressi(m foe ,4' is used by ()sw.iils('h in the
papers that form the principal rcferenc(,s for l]w present work.

Two derivations 'ire given, one based on mass-flow consider-

ations (ref. 21) and the other (ref. 20) on simplifying equation

(1) under the assumption of nearly paralM lh)w to

(1--' 2 2, ,, -t - (19)

and substituting the following series for the variable coetti-

eient (l--3/2):

1 --312= 1--._Io'-- 1 --At,/0,# "k • • • (20)

where 31 is the hwal Ma('h mmA)er and a* is the ('rili('al

sound velociiy as defined in equation (9). Comparison of

equalions (19) and (20) wilh equalion (5) shows that file
(:oettMent k in this 'tpproximalion is

,4.... ) -- M,/
a*-(" ('-)1)

o

A sire liar sit uat ion arises in th(, derivai ion of the simplified

equation for the shock polar, tlere again the precise form
of ( he expression for the eoeflleMIt, k of equalion (1 O) depends

on the details of the perturbation "tnalysis. The most
imlml'hmt point from the present point of view is that the

same expression for k is used in bottl (tw equation for tim

potential and that for the shock t)olar, namely, equations

(6) and (10). While this point has not always been explicitly

stated, it is actually a necessary condition for the existence

of the well-known transonic similarity rules.
The foregoing discussion has been based on equations

oblain(,d hy assuming that the local v(,locilies are only

slightly different from tile free-streaIn veh)city. On the

other hand, niany of the recent papers on transonic flow
about wings and 1)odies have been t)ased on equations ol)-

tained by assuming that the local velocil ies art, only slightly

different from the critical sountl v(docity a*. (See refs. 1

through 6, 9, and 13 through 1S.) It is shown in reference

12, however, that the pressure, force, and moment resuhs

obtained using these equations are identical with those

el)rained using the present equations if k is selected as given

in (,quation (17). These results, however, can t)e easily

converted to those that would 1)e el)lathe(1 using any of (he

other expressions for k by simply rei)laeing ('),+l)//'o by lc
wherever it occurs.

In order to fa(.ilitate comparison with previous results aud

to achieve an economy of notation the present analysis is

carried as far as possible without specifying a particular
relation for k. That is, the equations of the analysis amt the

reduced paramet(,rs with whi('h the l'osuhs are ('xpr(,ssed are

written containing k which may be o(tuale(l to any of the

four stah,d expressions. IIowevo)', llle n('lual vahl(.s of lhe

pr(,ssure coiqli(,Mit and Math )lund)(,r for 'm airfoil of Sl)(,('ilic,

(hi('kness r,i(io d('pend on which r(,la(ion is s(,h,('t(,(l for ]'.

The present ('alcula(ions hav(, l)i,(,)_ math, using lilt, expression

for ,4: given in equation (7). Th(, prilwipal r(,as()n f(,t' tl_i_

('hot('(, is thai it apl)(,ars t() l)rovi([( , :_ sot ,)f vquations, or li_

nlalh(,nlali('al nlod(,l, whi('h apl)roximal(,s ('ortain ess(,)itial

fea(u)'(,s of transoni(! flow wiih superior a,,cura%, lh,f()re
pro(.(,(,ding with discussion ()f lllis l)oini, il should I)(, n()l('(l

that the four alternaliv(_ (,xpr(,ssi,,ns for ,4' at'(, i(h>uti.al f()r

211,,==1, qnd all but (|rot given by ,,(luaiio)) (17) art, zero for
3L,=O.

A signifi('ant ease wh(,re (he four r(,hilions h,ad t,) difl'(,r(,nt

results is the l)re(li('lion of tim variation with fre(,-strenm

._lach numb(,r ()f the critical pressur(, ('oeflh'ieilt ('0_, (h,fim,(l

as t]le vahie ()f (he I)ressure (',)(,ili('i(,)it ('p qt a poinl wl.,re

the local _|aeh nunllmr is uniiv. It is iml)ortallt thai 1i

reltsonat)ly good al)proxinuilion t)e niaintaino(I for ihe vlu'ilt-

tion of ('v,, with .I/'o because shock wavt,s inak(_ their fll'st

app(qu'ancc and (he airfoil firs( expvrinc(,s a prossul'e di'a_

whol/ ('v t)e¢olncs lllOl'e negative thali (_ SOllio\vh(,l'(, ()11 ill(,
- is_ •

airfoil sllrfat.o. [11 the l)resellt approxilllath)n, ('v.., ('orre-

Sliolid:-i Io lhat vahle of ('r, aiid. h(,ncl,, of ¢:, a( whMl i,qua-

lion (6) ('}lallg(,s lot!ally frolll i,llil)ii(' Io hyl)(,i'l)()]i(' lyt)(,.

This condition is rec'ognizt'(I I) 3 the vanisliin K of Ill(' ('()(,tli('i(,)it.

of ¢,_, t,hlls

1 .ll,,"--k(:,)._ :0

or, ill. view of C(luaiion (16)

2 '2
(' 122)

"-=--I "o (_A,=:--kl',, II -.1L/)

The exact relation for isenirol)ic ttow is (e. _., ref. 27, p. 281)

[( + ,]('-- -'YMo _ ;7+ 1 v+ 1 (2:¢)

The variation of (_v<_with 3Io has 1)(,(,i1('oinl)uio(l llSillg the

exa('t l'(']alion all([ ea(',h of ihe four ill)t)roxiniate relations.

The resulls are presented graphi<'ally in lcigllre 2. I t lllaV

be seen that a reasonably good approxinlalioi), for C_,_, is

el)rained over a wide Ma('h )/un]l)er range w]len ,4' is (ak(,n

as .1/(,2(5,+ 1)/[.ro or (1 --J[,7)/(a -- I r,,), alld |]lal a SOil](,-

what gr(,aler (qTOr is incurre(l w}wn ,4:is equat(,d t() .1[o'-[2-}-
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FI(iI+R1,; 2.--Variati(m, apl)roxim'th_ and exacl, of critical ])resstlre

c(J(Al'i(dent with fr'(}(_-slre:trn]kIac|t ntlm|)er.

(7-l).lL/]/l;,, ()n th(, olhor hand, it very t)oor approxi-
]nalion l'eslllts if k is (,(tuated to (7-_-1)/U,,.

Nimilar ('oml)arist)ns ,an be made for local Madt mmfl)ers

A[ olh(,v lh,m unify by noting that the (.o(,ftici(,nt, (I--

AI,'-'--,_:_A of _:_ in equation (6) ('orresl)on(ls , in the present

alq)roximation, to l--._F, rims,

1 --31-==1 --31o --k_=l Cv (24)

'l'h(_ ('ovr,,sl)tm(ling exa(.t relation for isentrol)ic flow is

2 t +7 2 - MJ

('-- - --1-1- +.1,21_ J J
v --'L l [°'2 1

(25)

The results so obtained arc generally similar to those indi-
cated in Figure 2 althoug]l the relative accuracy of the

t)ett(q' apl)roxinmtions changes somewhat with the situation.

All the al)proximations arc exact, of course, when Cp=O.

On the other hand, none of the approximations are exact,

except for isolated eases, when C_ is different from zero,

even though all of the approximations agree among them-

selves when the free-stream Maeh number is unity. In

order to provi(h_ some information regarding the errors lha(
are lik(,ly to be ineurre(l when C, is not very small, figur(; 3

has I)(,en prepared illustrating the variation of local N'Ia<.h
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FI(IURE 3.---Vari'flion, approxim:tte and (,xa(q, of h)cal M:tch tmmber

with pressure c,),qtici(,nt, M. _ 1.

mtmber with pressure (:oelti,qent for a frt,c-slrt,am NIach

nmnber of mfit.y.
A second case where the exact, and api)roximato t'clalions

can })e eoml)ared is furnishe(l by (.onsidering the v(,h),.itv
jump througll a shock wave. If the flow ahead of the sh,)uk

wave is uniform a tl(l 1)arallcl to the x axis, the r,,suhs may

conveniently be rel)resente(| 1)v the shoek-pohu' diaff,'am itt

which .(_o2q-9;r, _ is l)lotte(t as a ftmction of _. The (,x_tt't
relation is furnished by eqmttion (S). The c(wr(,sl),)m[in _

al)l)roximatc relations are determined from ,,qualiou (11)) t)v

setlinF +++ e<+,and 'u,+_to zero, whet'el U

v_2-}-w_2 -[-(1-- i_L,z)+ _ u_] u+," (26)

2 _ 2()nee the wtt'iation t)f (_'0 v-+t0 ) with +t_ is determitted for a

given NIo, tlw (.orr(,sp()n<ling variqtion <>f (7'0_ [._,,e) with _+

may be rt,adily (h,tcrntin,,d sin<.<,, for thi_ ('ase,

_ =lro+U_, 7'0 =_',_, +7'__t'_ (27)

The variat.iou of _/_,f+_,+_ with 5_ for .1/o--1.2 has t)t,on

compttted using })()till the t,xact and al)l)r(>xima, le rohttious

and the results art, 1)rcst_nted gt',tI)hiu',lly in ('onvt, nlional

shock-polar form in figure 4.

It is evident from this (',ont])ari,_on that the best approxima-

tion to the sho(:k-pt+hu" ('ttrve is that obtained |)y eqttuthxg
k to Mo_(T+I)/Uo. Since all shoN_ waves art, a._s,tmtd to

be normal to the flow dit'e('tion in t.he ct)urst, of the t)resctd
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analysis, a notable point is that this expression for ]c leads
to ttle exact relation for the velocity jump through a normal
shock wave.

In problems such as we are considering here, the final test

is provided by comparison with experimental results. Al-

though both experimental and theoretical results for the
transonic speed range are limited, complete information

does exist at the present time for the drag of a single-wedge

section followed by a straight section extending far down-
stream. (See refs. 13, 14, 16, 28, and 29.) ']'lie theoretical

results were determined originally using equations obtained

by assuming that the local velocities are only slightly

different from the critical sound velocity a* and are therefore
identical with those that would be obtained using tile present

equations, provided k is equated to ('x+])lTo. Figure 5
shows the theoretical and experimental results plotte(t in
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FIqURE 5.--Theoretical and experimental drag re,_ult _ for a single wedge

section, k =Z+ I.
U o

ttle same manner as in the original 1)apers. Tile small

vertical lines on the experimental data points represent tile

uncertainty of the values. This figure indicates that the

theoretical and experimental results are only in general

qualitative agreenlent when k= (7+ 1)Uo.

The same results are replotted in figure 6 with k equated to
Mo2(7+l)/Uo rather than (_/+l)/lro. It can be seen that

file theoretical and experimental results are now in nearly

perfect agreement. Comparison of figures 5 and 6 provides

striking evidence supporting the contention that k shouh] be

equated to _fo_(_(+ 1)/[;o rather than (7+ 1)/Uo.

DERIVATION OF INTEGRAL EQUATIONS FOR TRANSONIC

FLOW

In order to make the present work more self-contained, a

derivation of the integral equations for transonic flows
having subsonic free-stream velocities will be presented even

though this has been done previously by both Oswatitsch

and Gullstran(l (refs. 20, 21, and 22). The present deriva-

tion, in common with that of Gullstrand, proceeds through

the application of Green's theorem in a manner closely

analogous to that employed in linearized wing theory (e. g.,

to

21;
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Flat+aE 6.--Theoretical and experimental drag resuhs for a ,_ingle wedge

section, k= M d ('r +1! .
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ref. 30), except that proper cognizance must be taken of the
shock discontinuities and of the additional nonlinear term in

the differential equation for the perturbation velocity po-

tential. For the sake of completeness and to illustrate the

simplifications introduced by making additional restrictions

and assumptions, the derviation will be carried through for

lifting wings of finite thickness and span, even though the
applications contained herein will be confined to two-

dimensional flow about symmetrical airfoil sections at zero

angle of attack.

The differential equation fun(lamenlal t. the folh)wing

discussion is equation (6).

(1-M$) b-__b!#__=^- ax a_ _

Since the l)rin('ii)al object of tim following amflysis is to

deternfine tile pressure which, a(.eording to eqtmtion (16), is

linearly proportional to t he pert url)ation velocit y component
u, it is convcnienr lo work with an equivalent equation for _t

ol)taine([ t)v differentiating equation (t_) with rcsl)ect to .r: it is

b2u b2u b -+, . 5_,:_b_,(_)(1--Mo5 _+5_+_==k. 2s)

It is advantageous t,o norzmflize the vqu+Hions by l,'lting

k

'U=_xx-- 2 u, v:_----_ r, '=cjE--2,+ w (29)

where

= 4i -M/

In this way, equations (6) and (28) redu('e to the folh)_ving:



THEORETICAL PREDICTION OF PRESSURE DISTRIBUTIONS ON NONLIFTING AIRFOILS AT HIGH SUBSONIC SPEEDS

Before proceeding, it should be noted that the introduction

of the reduced perturbation velocity component _ permits

the ready recognition of regions of subsonic and supersonic

velocities and emphasizes the points at which sonic velocity

occurs. This relationship becomes immediately apparent

upon substituting the definition of _ into equation (24).
Thus,

1 --M _ k
• i,_o_-A*2--1l_Mo _u=l-_ (32)

fl'om which it is clear, for flows having subsonic free-stream

Mach numbers (Mo_ 1), that _ 1 when the local velocity is
subsonic, _=1 when it is sonic, and _1 when it is super-
sonic.

As noted above, the derivation proceeds from Green's

theorem which relates a volume integral over a region R to a

surface integral over the surface 2; enclosing R. If a and _2

are any two functions which, together with their first and

second derivatives, are finite and single-valued throughout
R, Green's theorem states

z R

(33)

where the directional derivatives on the h,ft side are taken

along the normal n, drawn inward, to the surface E. ]t is
convenient to let 12=_ and to choose _ as the fundamental

solution 1/ra of the equation Wa-0

1 1

ra [(?__12+ @__)2q_ (5__-121,/2 (34)

wheret)y equation (33) becomes

ff[, _ _ (1)]_-u_ 73 dz_--

[ff -fff -- ,• R r3 r3 _2

(35)

The variables of integration in the equation are _, _, _ while

_, _, _ are the coordinates of a point P. It must be observed

that 1/r3 is singular at rs=0 and _ is discontinuous at the

shock wave. The point P and the shock wave must, there-

fore, be excluded from the region R. The exclusion of P

from the region R is accomplished by enclosing it within a
small sphere. The shock wave is excluded by altering the

boundary of the region so that it goes around the shock wave.

In this way, equation (35) may be applied to the region R_

bounded by the 5_ plane and a hemispherical dome of infinite

radius lying above this plane, exclusive of the subregions

surrounding P and the shock wave (see fig. 7). Since,

furthermore, the values of _ may be assumed to diminish

sufficiently rapidly with distance that the contributions of
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FmVI_E 7.--Region of integration.

the integrals over the hemisphere vanish, the following
result is obtained:

_(_,_,_) 1 FFFI b_y
--¢o

1 f_{[1 6U - 6-(1)]4_ g_-u_ 73 o+
Bo

n=
(36)

where the subscript u denotes conditions on the upper side

of the _ plane, the subscripts a and b denote values immedi-

ately ahead of and behind the shock wave, and S is the sur-

face of the shock wave. The volume integral is defined as

follows when P is ahead of S. (For sake of brevity, _b is

written in place of 1 b_. (_).)
ra 5_

1 b_ (gt2"_ dR-fff¢dle=
R. R,

(r r, £)
_ _.--¢0

It is clear that the corresponding definition of the volume

integral when P is behind S can be obtained by rearranging
the limits of integration. If P is kept fixed in the upper
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hnlf spa('(, and the region 16 bounded by tin, ._.0 phme lind _t

]l,,misphcrical dome of infhiiie rndius lying below this ]lhme

is considered, it folhiws in a sinlilar manner 1hal

t <'

]']'[ 1 ')ld_d_7_ ) ff.,l[l _

, , (jL},,,_
l " ' 1

wiwvc lhe subscril}t 1 denotes condilions on the lower side

of lhe :_9 plane and lhl, voltanu, inh,gnil is defined as follows"

It: Hz

i _ '1! -

_:-..,a ,. u-= k.J + dz,.q : )

(:m)

llllr<iducing the ll{ttati(in

b5 D_, 05_ (4(})

and a(htiilg equali(ms (3(i) nnd (3S), we tmvc

_0,.5 T):: -4,_ )_.x
II

-_--A;L -. _.

.t_ 7.:_b-i;--_ b,, _+_j,, a,_ 8,;-

} • o,
/7

(41)

wht,rc the surfnce hiiegrnl over S rel}rescnls the sum of lhe

c{irrcsf)(indili K ilileKrliis over _S',< luid _7l luid ttle vohlnrie

inl(,grnl live|' ]l 1'1'1)1'('S('I11, <':, lile S/llll (if ltl{, illlegI'li.|S over ]i}u

alld Ii)+. Thc illl('grilild (if tile first itltt'gi'0_l Of ('(ltllit.ion (41)

is zero ovcr till {if lhe _:_ ])hili(! ex{'el}l lhe s/irfii.ce If" (if llie

wing sufli<'ii'nliy exl('li(h'd to ill('lll{](' llie ctt'e('l, of l,he edge

siiigularitit's and is, in (.erlliin ctlst,s, exncily equal 1o the

v'iluc (if u 7|Veil by lh(' lhielirized liieol'y of sill}so|it(! tlow

ilt)oul lhin wings ({,. g., Pvf. 30).

-""-4_ ":_ 07: G '::' "
II

(42)

It ('ill| lie SOt'l| that. lhe first iniegrltl <if equation (41) liiit.y

be equ'lll'd to t'T_ when liie t)rol)lenl is OliO in which

A7 = ,At-7,,

nn(I

A({)u/{)_-) : : A(0_#,/0_)c

Ttiis condilion exists in lhose prolilelns where Au iuid

A({)_,/{)_) m'e ])rescritie{l at lhe outset liv llie t}Olllidlll'3" ('Oil-

(litions" for exlunlile , (a) given the h)a<tii}g {)11it liflhl_ SliP-

filet', find lhe CailiheI' (lislrilmlion: (1}) given l]le "tlil/l)(_ (if It

synunelricnl ii()nlifting ah'foil, [hid lit(' t)i'('ssure disiriiluihin.

E(tul/lion (41) clt.ll lie rel£11rded It:4 ill(' filUll ilitcTl'nl equa-

tion for u, but it. is itdvlntiil£eOtlS for lhe f(irlhc()niill_ iiiial-

ysis lo i)erf(ilqii tw() liiOi'(, ol)(,l'alioli_. Tiler Ill'(' 11) illlegl'0.t0

t.he vohllile iiiiegral twice b.v 1)lil'l_ wilh resl)ect Io -_, iakhig

proper co}.r>itizli.liCe (if tti{, dethlilions 7iv{,n in cqui/lions 11:/7.

t/,lld (39), lilld |o deconll)OS(' l]le Sill'face inleTrnl (VV('I" 1110

shock wave iillo <.Ollili{}il(,tliS lil/I'nlh'l to the axes (if tile

('Ool'dinlite .q3"slOlll. ]i1 lifts way, lit(' followin7 equation is
obi ained :

7= 4__q,4L,. {):- .

r.r,r 12) ':rr[['0,-i7_ 1 77" a" d_d._<iT_r_4 . r" a_ t -)-2---4;, '2 07 _ ) -;- '*--'-}--
I¢ :<

([r,{)77- _ (1"_7 FI _77 77 {) 1 C()S(,,,_)

[' ')] "br (". 1,,+;T=-,, =(,:, (4:_)

Alihough lhe inle/ralion by lnirls of the trilile itxi{'gTnl

perforinod hi g()in7 fl'olii equtUion (41) 1o 14:;;i) lliii.v SOelll

somewhat arlAlri/ry, liio resulthig e(tualiOli is sup{q'ior fr()lll

lhe point ill' vivw (if otdtliliin 7 approxiniale sohllion.% ]:{)r

exlunph,, the ii'iple inlegrnl (if equlllion (41) _liov,s il V(,l'V

sl.Pong inthl{.n('e of the velocities hi llie r{,7i(>n iinnledi:llel 3"

SUlTOUndin K ]) siii('e lhey lU'0 niuliipliod by l/r> Tliis in-

Ihience is hu'Izciy nullified hi the lril)le inleTi'al (if t,llunli<ni

(43) lm('ause lilU'l (if l.he Peg|on lilts il negiltive hllhi('liC(' and

plu'l, has l). t)osiiive inl'hlen(_e. Tile pi'ed(mihnull, hitlUeliCC

in [he hiller cii_l' is furnished lit Iho lerin _2/.,9 sll/li{lin K oul-

si(lc lhe integral. Tile coillrilmiioii of dislillii r('gions is

ll]so ([hiiiilished hi ilnl}(ii't.luice hi lh(! iril)le hilegTit| of equa-

Iioli 14;/) shl(!c lheir influ(ui(_e viirics ilivers('ly willl llie It|it'll

power (if lhe di._lli.ii(!{,, rill]let' l.hIlli l he tirst l)<)wei' |is hi

(_qlililhui (41). The li(lVlillllig('s (if ushig lhe forlitllhilion

provhle(t tiv equnti{tii (43) will Im('(nne It|lit't! evhlcnt eli

(,Xii, lliiltillK Al}t)en{lix B nnd the se(!iiOli enlitlc(1 '%ill}-

<_i'iLical I]ows."

A fttt'lher n<tvaliiltKe is ltutl lhe value of the (ritilc iiiie/rli[

of e{luliAi(m (43) is ('Olilhiuous lhi'ougii il stiock "ivilve r'iliier

[tuln disvolilillll()US |is is tile ('lise with ('(llialioli (41). A

t}ohii of g'ri'at hnliol'llince in the approxilnlite so]uli(in (h'-

scribed hol'eili arises from lhi, fli('l lhal lhe iiilcKrtltioli llv

pit, rls t)rovhtcs cxlra lei'nis (those conllliiliiig _7_f2) in lhe

iill.eKi'ltls ll|Oll 7 lile silo(4_ Slll'fll('e _' which conltlili(' with ltu)so

ah'eti_d.v presenl in such il wiIV lhnl the (.oillrilml.ioli (if lhese

intt!gPitls i)(,cOl]l('s Vel'y snililI whell the shock "waves lit)I)l'()l/('h

liorililil WllVOS, |is is liSliallv itie (!ilSl., ill liiKii SlliiSOlii<! sl)ee(ls.
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In a,ldition to satisfying the inlegval equation for _ given

in eqm_tion (43), the velocity ('onq)oncn/s on opl)osite sides
of shock waves must b(' in accord with the simplified relation

for the sho('k polar given in cqmalion (10). This eqmttion

may be rcwvilt(,n in mwmalized form I)y introdlwing the

qttaltlities (hqitw(/in eqm_tion (2.q), thus

....... l F_+Fb\
(7,_--_,y%(,.._--,._)'+(,,,o--,,_)':( 2 ) (_°--_°): (44)

Two allt,Hmlive forms of cquatioll (44) arc the following:

- 2 / (45)

and

I( -)l_ _Ia _ ql h" --

(_L-_,,I u.- -,_-,) +(t:o-T,):+_.-_):=o (46)

if the shock wave is a normal wave and the flow is pavalh,1

1() t.he _ axis (i.e., v:=_=_=_;_=0, but _'_), it can t)e

se_n from equati<m (45) that the normalized perturbation

vclo<'ity comp<)ncnt _ jmnl)s from 1 +A immediately ahea<l
of the shock to I--A immediately t)ehind the shock. ()u

1he other hand, eqlmtion (46) shows that the quantity _--_2/2

is equal on the two sides of the shock. This is consistent
wilh th(, fact that the latter qmtntity corresponds, in the

tran,_onic al)l)roximatiom to the mass flow, which is eonlimi-

mJs through a normal shock.

The soluthm, t)y the present ntethod, of the general l)rob-

]pm of tt'ansonic flow about thin wings t't,qttin,s the solution

of equqtim| (43) whih, taking proper account of the shock

rt,lations given in equation (44). This represents a formida-
I)h, task well beyond the reach of the present analysis.

Sinll)lificalion can t)(, achicve(I in two ways: by restricting

atteniion to a less g(,ncral class of prol)h,ms and by introduc-

ing additional siml)lifyi.g apl)roxi|nations. The lit'st way is,

of corn's(,, much to t)e pr(,ferred. Accordingly, in most of

tit(, following analysis, attention will t)e COlfflned to two-

(limcnsiom/1 flows. The necessary equations can be obtained
from e(lmltions (42) through (44) above by integrating in the

(lireetion from _=-- co to _=+ ¢o, noting that _=0 and
that -5 at,l _w are independent of _. They are as follows:

_TL=--217r L (A bb_L In I--5_ _ In 1) d_

R

- lnq-[l,,

(47)

' 1,,Y3+F(l,, -- b-Z- ÷ In L)-

ln_: 6-_ _ 6 , 1\ -'ll--eos 0_,_q "_

V¢] 1C 1"(

1 1

,. ::[(___)_ _ (__7)_1.. _ 49)

and

-- 2 .... } l b

+(.,.- (v,,- (5o)

As remarked following equation (42), co,sidcrabh_ sim-

plification results in both two- and thre(_-(limensional prob-

lems if attention is confined to the det(,vminalion of the prt,s-

sure distribution on symmetrical nonlift i._ wings of specilied

geometry. This resh'ietion permits the inlroduction of the
relations

A_=AiT_=0

into the integral over IV in either equation (43) or (4S).

This integral is then equal to the li,war-theory solutio,l _',_

given in equation (42) or (47) and can 1)e (h'tcrminc(t com-

pletely at the outset of the amflysis.

SIMPLIFICATION AND APPROXIMATE SOLUTION OF

INTEGRAL EQUATIONS FOR TRANSONIC FLOW ABOUT

NONLIFTING WINGS

QUALITATIVE DISCUSSION OF INTEGRAL EQUATIONS

The integral equations and the auxiliary relations (h'vch)p-

ed in the preceding section provide a means for the discus-

sion of the aerodylmmics of symmetrical no_flifting thin

wings of specified g(,onwtry in llows with free-stream hlach

numbers up to unity. At the present stage of devel(_i)ment,

however, it is n(,cessary to introduce some further ttpl)roxi-
martens heft)re solutions can be obtained. ()no of the more

accurate of tht,se involves two statenlt,nls about the nature

of the shock waves. They are: (a) all shock waves ace
assumed to lie in a platw l)erl)cndieular to th_ .c axis, and

(b) tim shock waves arc assumed to l)cno,'mal shocl_ waves

(i. e., normal I o the local/low direction). Ttwsc two state-

ments are slightly eontradiclory in themselves but ,night

t)e exl)cctetl to approach the true conditions quite ch)sely
for flows about smoothly curved thin airfoils. The tirst

statement corresponds to setting cos(n, _) and cos In, _) to

zero, thereby eliminating part of the integrals over S of

equations (43) and (48). The second permits an advan-

tageous introduction of equations (30) at.l (46) to eliminate

the remainder of the integrals over N. The above assulnp-
tions correspond to setting _ and _ |o zero both before and

after the shock wave and lead to the following relations:

/ _\ / _2\ b - _ b
- - (u--_))= . " :5"

Equations (43"1 and (48) thereby simplify to

R

for three-dimensional flows, and

u=u, t---- -- In d_d_ (54)
• z 2,QJ 5 
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for two-dimensional flows. These equations correspond to

those used by Oswatitsch att(l Gullstrand (refs. 20, 21, and

22) although a number of further assumptions were necessary
before approximate solutions couht be el)rained for the

velocity distribution on an airfoil surface. The present

analysis also requires many of the same or similar assump-
lions, but there are a number of general points which should

be discussed before any further approximations are intro-

duced. These points were not observed ill the previous

papers and the results suffer by lacking uniqueness in some

cases and failing to converge in other cases.

Before proceeding further, it shouhl be observed that the

solutions of equations (53) and (54) must approach those of

linear theory when the free-stream Mach nunlber is much

less than unity, since _<<l and the terms involving the

square of _ become negligible with respect to those linear in

_, thereby leaving only

In the interest of brevity, the integral equations for

given ill equatious (53) and (54) may be rewritten as follows:

wheFe

_" I
u=uLq 2 2 (56)

for t,hree-din'tensional flows, and

]

for two-dimcnsi(mal flows. Although I is a function of _7
and is therefore unknown, it is informatiw, to rewrite

equation (56) by solving for _ in terms of [ and _z., thus

where

= 1-V_/i-- (2_L--1)--- 1±w/I--L

L = 2_L-- 1

(59)

Several points are to tie observed at once with regard to

equation (59). First of all, the diserimitmnt must always

be positive in order to obtain real values for g, thus

z>L (60)

Furthermore, the choice of the plus or ininus sign determines
whether the local velocities are subsonic or supersonic. A

change in sign at a point where the radical is zero corresponds
to a smooth transition through sonic velocity. A change in

sign at a point where the radical is riot zero corresponds to a
discontinuous jump in velocity. As pointed out following

equation (46), such discontinuities correspond to nornml
shock waves and are permissible when they proceed from

supersonic to subsonic velocities (or from plus to minus sign

in equation (59)) when progressing in the flow direction.
Discontinuities in the reverse direction are inadmissible since

they correspond to expansion shocks, a phenomenon which
violates the second law of thermodynamics.

The values of _., an(1 hence L, can be calculated for any

given wing and are generally characterized hy certain regions

in which u'L is l)ositive and other regions in which it is nega-
tive. Tile absolute values increase continuously with in-

creasing Mach nuntber and the maxilnmn positive values

nlay considerably exceed unity as sonic velocity is approached

in the free stream. Not very much can he stated at this

point about the values of I, except, that they depend on the

distribution as well as magnitude of _ and that tim above

inequality must be satisfie(I. The relation between the two
curves is of utmost importance, however, and will he dis-

cussed qualitatively in the following paragraphs.

In order to remove mmecessary complications and to facili-

talc the discussion, the following remarks will 1)e confined to
the relations in two-dimensional flow between the functions

I, L, _, and rffL evaluated at the airfoil surface. In this way,
each of the four functions reduces to a function of a single

variat)le _ and can t)e illustrated simply by curves rather

than surfaces or hypersufaces. The subscript W is appended

to g and r_L to denote that the values arc those at the wing
surface. In that which follows, the curves will be shown on

two separate plots, one containing the L and I curves rep-

resenting the components involved in the solution of equa-

tion (59) and the other containing the _w and gL,, curves

representing, resl)e('_tively, the velocity distributions given

by transonic theory and t)y linear theory. In order to make
the discussion more definite, the curves will be drawn quali-

tatively as they wmdd appear for" a circular-arc airfoil having
its maximum thickness at the midchord position. A quanti-

tative (lis<,ussion of these <qmra('teristi('s will 1)e taken up for

the same airfoil in a later section.

The linear-theory solution _Lw for subsonic flow atu)ut cir-

cular-arc airfoils can 1)e easily derived through al)plication

of the expression given ill equation (47). It is found that

the values of uLw arc symmetrical at)out the mid('hord posi-

tion at all free-stream Mach numbers less thall unity. It

follows directly that the L curves possess the same symmetry.
For pure subsonic flows about such an airfoil, it is well

known that the more exact treatments, such as the Kfirmfin-

Tsicn or the classical iteration methods reviewed in reference

19, indicate that the nonlinear-theory solutions and, hence,
the gw and I curves, arc also symmetrical about the mid-

chord position. Since sonic velocity is not attained at any
point, the L and I curves never touch. Sketches of the
curves for" this condition are shown in figure 8. The second

part of this figure illustrates the fact that _w possesses larger

wdues over the middle of the airfoil chord than does _zw.

\

I.O

/.. \
FmunE 8.---Typical curves of I, L, Vt, and aL in the subcritical range.
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This relation has not been deducc(l from the foregoing pre-

liminary eonsi(terations but is known from many sources in

classical suhsonic theory. The same result has been found

once again in the present work t)y carrying out an approx-
imaic solution of equation (59). The details of these calcu-
lations will be described in a lat_,r s(_ction.

The curves showH in figur(, 8 are typical of those for all

.Mach nulnbcrs less than the critical Math number A[_,,
dcfine(I as the lowest free-stream Math number at which

sent(, velocity (_Tw=- 1) occurs somewhere on the wing surface.

The aforementioned symmetry properties are preserved for

all .%la('h uunibcrs less than the critical, I)ut the amplitudes

of all four curves in('rcasc wilh increasing Mach number.

For the symnictrical eir('ular-ar(' airfoils considered here, the

maximum vahies of _LW and U'w and, hence, L and i occur at

the 50-percent-chord positi(m for all subcritical Maeh nuni-

bcrs. Thus, in a(htilioii to the rcquiremeilt that I>_L at

every I)oint, it is necessary when the Maeh number is equal

to the critical value, that I----L at the 50-perccnt-chor(t posi-

tion. A rather intercsiiilg a(htilional requirement that fol-

lows from the qua(h'alie ualurc of equation (56) together
with the assumption that _ l'each(,s a smooth maxinium at

the 50-percent-chord station is that the I and L curves have
not <ullv l he same first derivatives at this station but also

idcnti(,tll secon(l derivatives. A typical set of curves for this

Ma(,h ilumber is showll in figure 9. It is to be remarked

t licit tlw inimls sign is to be us(,([ in equation (59) for all

free-slreanl Nlach liUUlber_ equal to or less than Jl,,.

/

1.0

0'

Fi<i('lt+; 9. Typical curves of I, L, _7, and liL at the critical Mach

number.

It: is interesting to contemplate the various possibilities

that niay occur when the Mach number is increased beyond

the critical. Accordingly, let us first consider the implica-

tions of assuming that the velocity distribution _w remains

symmetrical and continuous across the chord and simply
increases in magnitude with increasing Mach number.

(This is, in fact, the only type of mixed flow field that the

classical iteration methods have indicated, but many

doubts have been expi'essed from time to time regarding

the convergence of the methods when 2l/io)M¢_.) With such

an assumed symmetD- of the flow, the four curves will

appear qualitatively as shown in figure 10. As may be

seen, the curves are all rather similar to those previously

diseuss(,d for lower Mach numbers. The outstanding
differen<'c is the relation between I and L. Whci_ .tl,,_-.lI<,,

the two curves are tangent at the 50-percent-chord st atioll,
and the radius of curvature of the I curve at the same sta-

z--Z

I.O

0

I r " Uw

#z _%/
¢ _ \,

FIGURE 10.--Typical curves of 1, L, 5, "uld tis, corresponding to li

shock-free supercritic,d th)w. sylnm(,terical solution.

tion is equal to that of the L curve, V(hcu .l[,_)._[cr ,

tangency occurs at two pohits, equally st)lit.i,({ before and

after the 50-percent-chord station, and the sign iu equation

(59) is to be changed to plus over the poriinli of the chord

lying between the two poinls of tallgcllcy, lit ordcr for

_,w to attain its maximum vahic at nfidchor(I, as shown in
figure 10, the radius of curvature of the I ('urve must be

less than that of the L curve at the 50-t)er(,clll-(,tiord statioli.

At the tangent or sonic points, it follows from C(luation
(59) and the assumption of smooth acceleration or decelera-

tion through sonic velocity that the second derivaiive of

the I curve is greater than that of the L ('urve. Similar

considerations apply for airfoils that arc not synimetri(;al
about the midchord station. The o('eurrence of shock-free

flow wouht again rcquire tiiat the [ curve 1)e tliligcnt to ltic

L curve at two points along t]lc chord.

Before leaving this sut)ject, it. is ililei'esiing to inquire
what tile result would 1)e of a slight ali(,ralion (if th,, _lirfoil

shape, assuming that thc original shape was such flint, the

associated flow was of the sho(;k-fr(,e mixed tyt)e. (_onsidcr,
for sake of simplicity, thai tile basi(_ airfoil is sylnmeirical

about the 50-perccnt-ehord stiltioli. Th(, assunic(I shock-

free flow is thcrcforc ,_ynlinelrieal al)out tile iilill('tiord

station a,nd appears as shown ill Iigui'e 11, In or(h,r to

preserve the geometrical s.ynuiietry, (_()nsiller that the air-

foil shape is changed t) 5" tile addilioli to I)otli ill)tier ail(I h)wcr

surfaces of sI:mlll bilnllis locaic(t ll_t, lhe 5t)-t)er('ent-chor(l

station.. _iiice ih(, flow a(|jii.('t, lil Io the t)llinl)s is sulierso!iic ,

their disturbance pattern is l)ropagaLed downstreanl ill liar-

row bands whi('h relh,ci lillernalely from lhe ._onic line

and the airfoil surfa(,(, its _[iown in figure 1'.7). l)tuseniann

Subsonic

\/
/ k

/ k

/ \

/ Supersonic \

! k

Uo

\ /
\ /

\ /
\ /

/\

J

t,'[_;(:R_: 11.- Shock-free transonic flow.
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." //_! /J_t\
,-

Subsonic / Supersonic // ','\ // \_,

\ /I, \\ ,¢7
', \\,t' \V/

', \1/!.}vX

FIqURE 12. Transonic flow wilh ,,,hock wave.

has pointed out ill reference 31 that, as the disturbances

reach the rear of tlie supersonic region where the h)cal

Maeh nunibel_ of lhe original flow ai)protl.h unity, the

retleeiions become increasingly (,on(_enirated, the disturb-

antes aniplify, and finlllly a shock occurs. It, thus appears

lh'lt there are only a restricted numl)er of sh(,(:k-free mixed
flows and that, in ge/i,,rtll, the supersoni(: region t,erminales

with a shock wave.

On the other }llul(l, if the disturlmnees were propagated

forward they wouhl eulniimm* in a shock w_lve lit t,Jie forward

sonie point. This shoek, however, would be an expansion

shock in whi(']l the velocity junlps fronl sultsonic to Sllper-

SOllie Vll]lle.'a,. A.'g lllelliiOl/O(| previously, expitlision s]locks

are forl)idden l/y ihermodynnmie eonsideritlions and, hence,

lnllSI, be ex('hlded frollt lhe present 'lllll|VSiS. Tllis elill tie

ae(,onlplished l)y stipulliting t llat lhe trilnsilion froni sut)-

sonic lo sul)ersonic velocith,s lit tile forwiii'(t sonic poinl, lm

snioot]i, or llnll lhe L lin(t [ eUl'Vi,S roltiin Olle poinL (if

illngeliey. ]li liddilion 1o t)reveliliilg lJie ocetlrreliee of (,i-

pitnsion silo('ks, it lippears, (ill l]ie I)tlsis (if lhe foregoing, tiitit

this I'('([llil'('lll('llt, also efl'eeiivi,ly l'llles Olll ltll l}le lllldesired

forward propaglll ing (I is111 i'])lillces.

The preee(lhig discussion provides fill insight into Ille

niechlulisni for lhe devl'lopnl('nl of asynlnlelricid flows atiout

synllneirlcii| airfoils lilid for lhe oeeurrenee (if sJiock waves.

In i}le l)resenlo work, tJiese collsid(,l-tll[ioils life rt'flecl('d in the

rehllion belween the [ and tile L etirves. Thus, recall lJill{

if l]le flow i,_ silook free ns sJiown in figure 11, ih(, [ lind lile L

elli'Vi'S lli'e t)()iii SVllillielriciil llS sht)_,Vll 1)revi_msly in figure

IlL If the airfoil siinpe is eiillnged iii lJie iiililiner indi('llled

in figure 12, it is evi(h,nl lllnl l)oi]l tile [ lln(t l}le L ellrVcs

will })t,('()n/e ii]lci'o(i. In so (l(tilig, iiie L ('urve i'eliillilis s.viu-

melrielll ill)out, lJio InidcJiord slalion, tnil liie (,isyniniell'i(,iil

liallire (,f l,he 7 (tislribulion eallSeS the [ ellrve to lake ()ii

larger VililleS over llie relu" of the airfoil lhiili over l]ie fr()iil.

If ilie ttow i/(|jusls iiself so thai ii_e / ciirve is lliligelii lo 1lie

L ciirve ill, lI point Oil tile forward half of the airfoil, ilS ii

IllUSt (10 to _tvoid lhe o(!etlFrellce (if fori)i(hlen expallsi()li

slioek _vaiv('s, it is likely ihltl, the ('llrVos will riot, tie t_lng.lli

at it sceoild l)oinl lilong lhe reill' ]inlf o:r lJie _tirfoil. In llie

apl)lielllion of equ'llion (,59), l herefore, llie sign ('}ll/nKos

frolil llliilllS lo phls ill llie point of liiiigencv tnit, liifly (']imige

tmek I o iilin/is lit li 1)oinL WJlei'e |lie lwo curves lutve (lifl't'rt'nl,

vllhles. As not(!d previously, su('h ii ('on(lilion (,orr(,sl)on(ls ,

in the pres('nl itnlilysis, to file O('('lllT('ll('i' of II shock v,i/vo

Itlld is assoeillll,d wit]l it _u. eilrv(, (fl' tile ty]). sil(mn in

figure l:J.

Silie(; il ]ias booil intlic_ite(I lhal /h(' sho('k-freo niixo(i flow

is Jim exc(,l)lion rliliier lhlln ilie rule, t h. ('Iirv(,s of fiT'ure 13

llll/V lie r(,glir(ie(1 llS l,vpicilI for itie sllpOl'('riliolil Xlli('ti lilllll-

tier l'ltllge. In altv CVelil,, t]l(,se Clll'V(,S IllfiV tj[, ('_msi(l(,re(l

il,S tJie 111()1'(_ gen(,rlil olles sin('e lJiov include lJte s.vnini(,lricnl

eilrves iis a SlieCilil i:ilSe. These lillltl('i'S _ill liI'is(' liTiiili llll_l

lie lJie topi(' for furl]ler discussion in i,]ie iioxt _e('l ion ill which

till a,p|)roXilllllte llletJlolt for file solution of the inlegrnl

equation for t l'llns(niio flow will tie (h,serit)(,(l.

,---7

I.@

!

C !

F_(:_.R_: 13. -Typical ctlr;'cs of I, L, 5, gin(117L cori'e_pol_ding to <-tljJt, r-

critical flow with shock, a>ynlineirical solulion.

SI]%IPLIFI(_ATI()N (iF THE INTEGRAL EQUATION

The remninder el e the present discussion will lie cliil('(,l'ti(,(t

wiih two-diniensionltl flow atimll non]iftin 7 syniinetrieiii

_lirfoils of specifi(,d gl,Oliielrv /ill(ler lhe <<l_,_lilliptioil l]nit _<iiiy

slioek wllves whic}t Inlly lie l)rest,nt life ll()l'lltill SilO('ks situitte(i

l)er])eri(ii(qlllu" to l]le .g, axis. Tilt, ltllliivsis will tie bns(,d liiol'e-

fore (ill O({lia{iOil (D4) wtiieJl> wJioll wrii l(,ri iu full, is

;7_C7,7)

l

'_,;j'j" t.i)

Atit)roxinntte sohiti()ns of this eqtnition could eonceivld_ly be

worked Otll_ nulnerica||y" liy sturlhlg wit il II two-(lilll(,liSiOllll|

grid of suitlihl.v se]ocl,e(I vtthios for 77(_,_) lind it(,rnling until

coilveFgollee i_, oldnined. 7ueti culc'u|lttions would proceed

})y inserl_hig the assuined values for ]7 into ihc dout)le hitegral

ttlid solving to obtain lhc next utit)roxiln_ltion for _7(7,7),

lllakJllg use of llie tflll/_,ellcV (,()lillJtil)li oil ihc stlrfa('es or

functi(ms rel)reseille(t by I <'til(l L a< discussed in tile preceding

seelion. ]f the first approxinialion for ;7 is taken to be the

results given b v ilieomt)ressit)le or t)y linearize(I ('onipressible

tlow iheory, as in the ]{_/yleigh-Jltllzen and (,flier (.lassical

iteration meihods, it, s(,eins to 1)e the l)revniling Beli(!f that

convergence will t)e obtained only when th. free-sirelinl

_Iae}l nunllmr is sutficiently snitt]l lhnl lhe tlow is sul,soni0 at

every point. I1 ]._ al lhis point that ()swalilsuh (refs. 20 lind

21) SUl)l)lied lira iinportant i,lc. L}lltl niixe(I th>w tidds eoli-

t aining ,_lioek w'tves (!Jill be otttiihiod if the sll-lrtin_' _ distri-
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button contains shock waves. Thus, in place of taking the

startingL:solution to be that given by incompressible or

linearized compressible flow theory, the idea is to start with

a reasonable guess for tile values of _, being sure to include a

proper discontinuity complying with the shock relations of
equation (52), and then to proceed to the solution. As will

be seen in the succeeding sections, it is not necessary to be

highly accurate in tile initial guess for _.

A source of difficulty in the numerical solution of equation

(61) by an iteration process is the double integral. ]f it

couht be reduced to a single integral by introducing a suital)h_

approximation, the entire problem wouhl be greatly simpli-

fied. In the present analysis, it is assumed, following

Oswatitsch, that approximate knowledge of the velocity
distribution is sufficient for providing a working approxima-

tion for the double integral. In particular, it is assumed that

a sufficiently good approximation to the velocities in the

vicinity of the wing can be expressed in terms of the local

coordinate _, the ordinates of the airfoil surface _(_), and the

desired but unknown velocity distribution _w(_) on the

airfoil surface. This permits one integration to be performed,

thereby reducing the double integral of equation (61) to a

single integral.

A number of statements regarding the variation of _ with
over the middle portion of the airfoil can be made immedi-

ately. For example, _ starts from the value _w at the air-
foil surface with an intitial rate of change given by the

irrotationality condition

b-S Jw \ b_ l_,

and probably vanishes at great distances as lf52. These

conditions, of course, are not sufficient to determine com-

pletely the variation of _ with _, but may be used as the
basis for the development of an approximate relation.

Oswatitsch (refs. 20 and 21) has already considered this step

and has suggested the following relation:

_ rz_,o) (63)
u(_,_ =[I + (_/b)]_

where b is a function of 5 so chosen that the irrotationality

condition is fulfilled at _=0. Thus, differentiation of equa-

tion (63) with respect to _ and insertion of the definitions of

equation (29) and the boundary condition of equation (14)

yield the following:

2_w 2uw 2f3s _w
b_ ......

(_r#_z-)w (_/_x-)._- k (_w/_x)w

2B 3 UW 2Uw

where Z represents the reduced ordinates of the airfoil,

related to the actual ordinates by

- kUo
z_=-_T z(z) (65)

Attention is called to the fact that the approximate relation

for _(_,_) given above is not entirely satisfactory. Evidence

of this is provided by the fact that g is indicated to be zero

in the region ahead of tile leading edge and behind the

trailing edge where b is infinite and that tile discontinuities
in _ at the shock surfaces are consistent with the shock

relations only at the surface of the airfoil. The errors in tile

pressures on the airfoil surface resulting from the former are

small due to the attenuating influence of distance, and those

resulting from the latter have been partially compensated

for by a readjustment of the approximation at Mach num-

bers near unity where the shock strength becomes large.

Substitution of equation (63) into the double integral of

equation (61) permits integration with respect, to _. Thus,

by performing this integratioI1 and setting _=0, the following

approximate integral equation is obtained for _w:

fo-- -- Z/W
Uw:ULw+_---- _w2_- E _' d_ (66)

The function E is

E
=E(X):Tr(1 X2)5 2 IX](5--10X2-t-X4) -

(1-10X_-I-5X ') In IX{ -1 (1 -l-X2)(25--71X:--X4--X_)]

(67)

The nature of E(X) is illustrated graphically in figure 14.

.4 .8 1.2
X

FIC, Vl_ 14.--Variation of E(X) with X.

,I.6
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Although the integration interval is indicated in equation (61)
to extend from _=-- _o to _=q- _, the contribution of the

regions ahead of the leading edge and behintl tile trailing edge
is zero since b is infinite. The integration need, therefore, be

carried out, only over the chord c. It should be noted that

the integral ill equation (66) corresponds to 1/2 in equation

(56).
Although equation (66) is considerably simpler than

equation (61) owing to the replacemenl of the dottblc integral

by a single integral, many of the essential difficulties remain
since the integral equation is still nonlinear and the kernel

is singular. Since no known methods exist for the solution

of such equations, we can only proceed at the present time

by introducing additional simplifications. One metho<l
proceeds by approximating _w with some simple functions

having certain parameters temporarily unspecified. Values
for flu, latter are determined hy substituting the functions

into the integral e<tuation and satisfying the equation at a

limited number of points equal to the numher of unspecified

parameters. At this point in the analysis, Oswatitsch
assumed that the variation of gw across the chord t'ould

be represented by a parabola, one or two half-parabolas,

or a rectangle combined with a half-parabola, as illustratt_d

in figure 15, all of unspecified height and chordwise extent.

FInURE 15.--Assumed chordwisc variations of _Twused by Oswatit_;ch.

No account was taken in the integral of the influence of

the region 1)ctween the leading edge and the station where

gLw=0 on the forward part of the airfoil nor bctweel! ihe

station where gtw=O on the rear of the airfoil anti tht,

trailing edge. Upon inserting a selected comLmation of
the ahove inentioncd elements into equation (66) and inte-

grating, there resulted a system of sinmltaneous quattratic
algebraic equations having as many members as there
were elements in the selected general fornt of solution.

In many cases, Oswatitsch used only one eh, ment, either

a parabola or a half-parabola and assumed a mean value
for b for tile entire chord. The method included no provision

for the improvement of the result through iteration or other

means, the only measure of the accnraey heing the (tegree

of correspondence between the initial and the final gw dis-
tributions. Nevertheless, the results presented in references

20 and 21 were encouraging in that they showetl many of

the known characteristics of iransonie flow about airfoils.

In particular, shock waves appeared when the critical
Mach number was exceeded and moved rearward with
further increases in Mach number. However, because the

initial values for g_, were generally substituted not only

into the integral but also into the term _w_/2 standing

outsi(te the integral, and hecause the tangency requirt_ment
on the [ and L curves necessary for smooth transition

from subsonic to supersonic velocities was not realizc<l, a

multiplicity of solutions was often obtained. In one case,
three solutions were actually given and more could have

heen obtained which would have fuliilled equally well the

condition of correspondence t)etweell initial anti fired result.

In atldition, the quality of tile results appeared to (h, leriorate
when the Maeh number was increased to higher vahn, s, tile

up])cr limit of aect,ptal)ility appearing to t)e a Math number

of at)out 0.8._ for It-percent-thick airfoils.

The integral equation method has been developed further

in referen('es 22 ihrough 25 1)y Gullstrantl. In the first of

these, reference 22, equation (61) is simplified to a single

integral equation through the use of a more elaborate veloc-

ity-distribution function than that given in equation (63),
and the resulting equation is solved by an iteration process.
Tile introduction of an iteration proeetlure makes a marked

improvement over the metho(l of ()swatitsch sinec it then

becomes practical to increase greatly the number of elements

with which gw is represented. The method is applied to

three 6 percent-thick NACA low-tlrag airfoils and the re-

sulting vtqoeily tlistril)utions are givt, n. In common with

the original met ho(I of ()swatitseh, ditticuhies occur when tile
Mach number is tot) close to unity. The highest Math

number for whit'h results are given is 0.91. Nlore recently,

Gullstrand has presente(l approximate solutions for tilt,

velocity distribuliuns on svmmetri('al airfoils in sonic flow
in reference 23. 2 In both of these works, however, the itera-

tion process proceeds bv inserting the known values into

both the integral and the term _w2,/2 standing outside the

integral. This procedure is equivalent to replacing the
second-degree (,quation for _Tw with a linear equation and

ot)scures or loses many of the characteristi('s of the quadratic
solution discussed in tile preceding section.

The t)resmd analysis also proceeds through the use of all
iteration scheme, partly numerical and partly graphical, but

the known valucs are substituted only into the integral at

each step of the process. The quadratic nature of the equa-

lion is thereby retain('(l and lhc tangt,ncy condition on the
I and L curw,s ,'an be fulfilh,d. Satisfaction of tile latter

requirement is essential for tmiqueness antl t'onvergenee.
Inasmuch as lhe calculations for the circular-art: section

were well advanced when Gullslrand's papers were r,,ceived

and were produeing reasonable results with the simple

velocity-dislributioll function of ()swatits('h, i! was (tecith,d
to continue rather than to start over using a more t,laborate

vclot'ity-distribulion function. It has been found, however,
that additional attention must lie paid to !he inttuence of

the region behil_d the !railing edge at the higher Nlach num-

bers. Upon observance of these additional refinements, re-
suits are obtained for all Math numbers up to unity. At the

lower Math numl)ers, these results are in gt,neral a greemen!

with those found by the simpler, although more aplm)ximate,

method of ()swatitsch. The present method ('arries right

on, however, into the higher Math imml)t,r range where tilt,

simpler melho(l met with diiticuhies and succeeds in showing
the well-known mvariance of local Mach number with

changes in tile free-stream Math numt)cr as the latter

at)preaches unity.

a Since eqll:_,tion (rid i|e_eneraie_ al a N[_,_!ll nllmbet of u;dty _t hptr .8=11, the sonic results

of reference _ are ol)t tit_e(1 hy first (lcvelolli!lg a m.u .l_alble-htlel_rM i,qll_llioll to ret)llwe

eqlltlio,I ((')1) iMId tilt, r1 sitnldifying i)3111 so)Ixlille by _ttt itt.l'Ittit!ll l_roccdure. "]'hl* inlegrM

equ !,tiolI is (lilly llSed, hfl_ exer, to (lelerllline th:: veloeil y distriblll, ioii over the portion of the

airfoil forward of tile station of tnaxirllUin lhicklless. The, rClllailldtT of tile solution is ob-

tained by means of the theory of eharacleristies.
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In the present calculations for circular-arc airfoils, the

necessity for additional refinement begins at Math num|)crs
somewhat greater than that at which the shock wave reaches

the trailing edge. Consequently, no attempt is made to

account for tim influence of the region behind the wing until

the Math number becomes sufficiently large for the shock

wave t() reach the trailing edge. At: higher Math numbers,

lhe influence of this region is approximated in the following
manner. First, it is assumed that the shock wave which

stands at the trailing e<lge remains of the strong family as

the free-stream Math number is increased to unity. It is

assumed furthermore that, the flow is parallel to the _ axis at
the shock position and that the shock wave is nornml to the

local th>w. With these assumptions, it follows from equa-
tion (45) that the values of _ imme<tiately t)ehind the shock

wave are related to those immediately ahead of Hm shock t)y

_ 2-_7. (68)

Since 5", is given by equation (63), it follows that 5"b can be

expressed in terms of the values of 5"w and b immediately
ahea(1 of the shock wave in the following manner:

¢7b(2)-- 2 -- [i-]-(_/:b.)) _ (69)

Because the shock terminates within a finite distance of the

airfoil at all subsonic Maeh numbers equation (69) is

approI)riate only within a certain range of i7[, namely,

that for which 5",]>1. In the present calculations, the end ot'
the shock occurs at such large i_'! when the shock is at the

trailing edge that equation (69) has heen used to represent

the values for 5" tmhind the trailing e(tge for all I_]. It is
further assumed that the contril)ution of the region behind

the trailing edge can t)e satisfact,,'ily approximated by
equating 5" to _7_ f,w all points I)ehind the trailing edge. It is

recognized that neitlmr of tlwsc assumptions constitutes a

good approximation for _ at great distances from the wing,
but lhc attenuating intluence of distan<'e diminishes the

error in the values of the integral at t)oints on the airfoil

surface. In this way, equation (66) comes to be replaced

with the following relation determined from equation (61)

t).v performing an integration with respect to _ under the

assmnption Ihat the variation of g with 7 (or _') is given by

equation (63) for stations ahead of the trailing edge and by

equation (69) for stations behind the trailing edge.

M

(70)

where E is as defined by equation (67) a,nd F is given by

_,_ :F(X)= (i+X_,_ [<xl(a-x_) -F

2(1-3X_)InIXI-(3-_-2X'_-Xg] (71)

The nature of F(X) is illustrated graphically in figure 16.

In this case it is at)t)arent that the three integrals of equation

(70) taken together correspond to 1/2 in equation (56).

To summarize, equation (66) is used in the present caleu-
lalions when the Mach number is h, ss than that at which the

shock wave first reaches tile trailing edge, and equation (70)
is used for higher Math numbers. No significant (liscon-

tinuities are produced in the value of the integrals, however,

since the contribution of the additional integrals only
t)ecomcs significant at Math mmd)ers greater than that at

whi(:h the procedure is change(I.

f

0 .5 1.0 1.5 2.0 25 3,0

X

FIGURI+ 16.--Variation of F(X) with X.

NUMERICAL EVALUATION OF INTEGRAL

One of the principal steps in lhe iteration method used

herein for the solution of equations 0;6) and (70) is the

evaluation of the integrals. Since u'w a n,I b are generally

prescribed by a set of numerical values rather than by

analytical functions, a mmleri('al technique has been used

for the integration. This process consists of replacing tile

prescribed _w distribution with a stcpwise approximation as
indicated in figure 17, introducing ,_ mean value for b for

each of the rectangular elements, i_Jtegrating to determine

the contribution of a single element, and summing the

influence of all the elements. The contrihution of a single

element of width l situated on the airfoil ,,hord, as typified by
the shaded area of figure 17, is given by

5"Wi 2 .

2
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Fml:nn 17.--Stepwise approximation used in evaluation of integral

when shock wave is forward of trailing edge.

Upon performance of the indicated operations, the following

expression is obtained for f_:

_.ft =t 2 (i q=A2)4_r 1 ,,.(3r2- ' .24 ._21_41[(I@A) --(I@A) q--N(l@A2)--S]-I -

12:1 (A2--1)In IA[-:1(1 +W) [(1 +A_)Z@ 12] } -I-

lq_ {3rr 1 [(lq_B2;, (l_}_B_2@8(l@B2)__8]_t_12(a B27 )-Ill

12B(B_--I)lnlB]--B(lq-B 2) [(1-}-B_)2q-12] } (73)

whel'e

A=/,+2(_--_,) 1 _, I(_ -" i/21,)l

(2Z_i) 1_{)*.,, 1 /2-'_,)(_)J_B=l'--22b, 4 _,'- ,_ I. -i_

Thus, the integrals in equations ((;6) and (70) that contain

E arc appvoxmmted as follows:

It, is evident fronl equation (70) that the contributio,_ of

r_ single element of width 1 siluated behind a shock at. lhe
trailing edge, as typified by the shaded area of figure 18,

is composed of two parts. The first, depends on an integral

involving E(X) and is evahmted using.f, in the manner just
(tescribed for elements on the airfoil. The second depends

on an integral involving F(X)

-- l,:

[(2)()].,t, t F d# (76)

which, upon evaluation, yields

_r =(lq-A_i _ 2 IAI [(lq-A2)2+(I+A_)--2]--2AlnlAI--

, z} 1 (_-BA(1-_A) +(I+B_ 2 IBI [(I+B_)_+(I+B_)--2]--

2Bln[B]--B(I+B 2) • (77)
J

where A and B remain as defined in equation (74). " s

the integral which contains F in equation (70) is approxi-
mated as follows:

"- 21_[,, (78)

Values of f, and gl are presented graphi('ally in figures 19

and 20. (It is noted that the graphs in reference 21 that

correspond to figure 19 of this report are mislabeled.)

With the simplifications intro(hwed i, this st,orion, the
fmwtion I ,)f equation (5t;) is approximated by

- [_7- L" (2¢_'_-I (79)

for Ma('h nmnhe,'s h,ss than those for which the shock wave

is situalcd a{. th(, lrailing e,lge of th(; airfoil, and

MW a _\

-_ 32/,
- ! /

[(-9 [i

, )]+

(=)]

(80)

for larger Math numbers.
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b, for v_trious \,-due_ of _-- _'-- li " Conlt)utcd from equation (73).

DETERMINATION OF _L w

Tim term _Lw that appears in the integral equation for

transonic flow represents the values for _ given by linear

theory for points on the airfoil surface. Its rabies can be

obtained from the general two-dimensional solution for _

given in equation (47) by performing the indicated operations

and setting _=-0. As noted in equation (51), simplification

oc,curs for the symmetrical nonlifting airfoils being consi(lered
herein because

A b_L Z_ bWL k bWL.= 2 kUo arxz d_Z

thus

_t_w=lim___ --2_r 2 d__ In ri- d_

The Cauchy principal value is understood in the last integral.

The present calculations are for thin circular-arc airfoils for

.... ]' '] I _l i,

I<-LI/_, ,l i!1 1
I 1 I
I l 1

I.i I Ft-.

I-- ---.. "_. F<kl-- _ "_. _. .
_"'k ""_. _. 1 I b-,JI

" "'-'_-_ -" "", ", "_ I "k I
_ _--- "_, _ ,, ,, _ ",. 1 1% 1

_- _ \. 4 V"k I

-_". <-" ,'_.'\,.,.\ ."- J'1,J-_. [ ,0.\\ -.¢_._" -i_ \\\\
.I .2 .4 .6 1.0 2 4 6 I0

24
bo

d")]Fu_V_E 20.--¥%riation of influence funclion gi /_ ' ' b[ wiLh

2/_
of /_ 'b_ for various valtl(_s 2 _, Coinputed from eqtlation (77).

which the reduce(l ordinates Z_ of tlm ul)per surface are given

by

z,== _u._:__z.- 77-:'{_t[_-(7), ]} =_ [_-(_) ] (83)

where 7 represents a reduced t hi(,kness ratio which is related
to the actual thickness ratio as follows:

kUo t
7 .... (84)

Performing the indicate(l operations gives tim following

expression for _Dw:

\2 c/ In c_] (85)

We thus have, by substituting equation (85) into eqttation
(59),

_r - 7 1

It is seen that T plays the role of a similarity parameter.

Thus, gaw for a family of symmetrical nonlifting airfoils hav-

ing the same thickness distribution depends only on 7 and

the position coordinate -2/c. Inspection of the integral equa-
tions for transonic flow shows that their solutions for g,, also

depend only oa T and 7/c.

Many previous papers on transonic flow (e. g., refs. 12,

14, 16, 17, and 18) have used the symbol G to designate a
Maeh number thickness ratio parameter different from the

parameter 7 used herein. The definition of G, suitably gen-
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eralized to allow for various expressions for k, and tit(, reht-

tion between _, and 7 are as follows:

Go= --[lrok(t/c) ]e?a--

The parameter _,, possess(,s the distinct pra(qhml advantage

of approaching zero l'al|wr than infinity as ill(, Match mm_b(,r

approa('hes unily. The corresponding parameter referring

to the local conditions has commonly been designated t)y

the symbol _.
1--JU

whtwe M is the local *Iaeh number. Siuce th(, (luanlity

l--M: is shown in equation (24) to be e(tuival(q_t, in the

i)rt,sol_t approximation, to 1 AI,,2--ku, th(' relation fro"
may be rewritttql as

1--M/--ku
_=- ir,o_.(t,c)V,,_ (su)

whi('h may I)(, (,xl)rt'ssp(t in terms of'_7 and r as folh)ws:

--l (90)

ITERATION SOLUTION OF INTE(JRAL EQ(JATION

Solutions of the simplified imegral equations have b(,o,l

ol)taincd for transonic flow about circular-are airfoils hy
using a numerical and gr'lphical t)rocess. Four slightly

different lechniques at'(, used del)ending on the Maeh re,m-

her or, more precisely, on the value of r. ()he procedure

is used fi)r the sut)erilical Mach mmfl)er range, a second is

used in an attemt)t It) lind supercritieal shock-free solutions,

a third 1o (h,tt,rmim, supcrcritical solutions in the range of

r for whMl the shock position is forward of the trailing edge,

and a fourth for still larger valut,s of r. The latter range

(,xt,onds up to a free-stream M-ach number of unity.
Subcritical flows. --Solutions for small Ma('h mmfl)ers can

lie el)lathe(1 bv a direct iteration process starling with the

linear-theory soluti(,zl. In (letail, the caleulalions proceed in

the following manner. The vMut,s of _L w corrospon(ling (o a

given 7 (sptwifitd thickness ratio and Mad, llumber) are

calculated from equation (85). The _'L,. curve is apt)text-

mated with a stepwise dist,'ibutio)l of ten st('ps, and the

vahles of the I curve are computed ther(4rom using equat ion

179). Knowing tile vahles of _'_w(_) and 11_), one ol)tains a

first approximation to "ffw(7) using equation 159). The

process is now repeated using the values for _Tw to ('ahqflate a

new I curve, fi'om which a second approximation can be dr,-

retrained for _w, etc. A typical set of results illustcaling the

convergence of the process is shown in tlgure 2[. The

process appears l o converge rapidly, at leasl in thv present

calculal ions, whenever the Mach number (or re(ire properly 7)

is sufli('ienlly small that 7/does not exceed unity (or the local
v(,loeitv does no( 1)(,come supc'rsonic) at atLv point in (he
calculation. ]f r is increased to a value such that 77becomes

equal (o OlW a( any step i, (he i(vra(ion, how<wer, th,' process

terminates abruptly with the appearance of complex values
of _7. Since tt)e results of successive iterations oscillate in

this Maeh nUlnber rang(, and sinc,,_ the startinggL distribution

I)rovides maximum values that at'(' too small, any such
termi,mtion oc('m's in lhe first iteration step. Such an

ubrut)t h,rnHn*ttion of the calculations is in marked contrast

to the well-known properly of tim classical iteration nwthotls

of producing sot'end- and higher-order sohttions indicating

shock-free mixed flmvs. It will t)e shown in the following

discussion that (h, difference in behavior is not a pro(hie( of

the additiomfl assumptions and approximations hllro(hwed

herein, but stems directly from the reeogrlitiott aud rater)flea

of the (tuad,-'tlic nature of equation ('(;1).

J,

_--Flrst approx.

.3 _ j- Third oppro*

- /:-r- "\
/

-'-Second appro×

.2

.I /

/
°/ I

0 2 4 6 ,8

7/c

FmtRE 21, ]{esulU. of ih'r:tli()n calctllations in the ,,.ub,:ritie:d r,tn_;e,

q. 0.229.

Tilts pelt)( can lie discuss(,d in greater &,tail I)3" conlit,ing

attention t() only tim first step of the in'ration 1)ro(:edure in

whirl) the ] (:urv(, is ('alcula((,(1 using 77w--'iTLw. ]f the pr,,s(m(

iteration procedure is us(,(t, if (he 77Lw ('urve is replaced with

ten rectanguhtr so'l)s as shown in figure 17, and if the l (.urvo

is calculated using e(lualio)l 179), then equation ((it1)yields

the following resuh for _Tw at the 50-perc(mt-(@)rd sta(iot)
of a ('ir('ular-av(' airfoil:

(c)z __"/ -s7+7/'w x : 1 1 1.030T _
• 71"

(91)

For low Ma('h numl)ers, r is small, the discriminant is posi-

liv(', anti tilt' first, approximation for _.. can t)e readily ot)-

tained using the nlinus sign. As r increases, the value of

lhe (lis(.rimilmnt d(,('reases and becomes negative when 7

('x('(,eds 0.490. This value of r, therefore: represents an

upl)(,r limit for (h(, Ma('h number at whi('h the l)reseld.

pro('('ss can h,a(t 1() a us(,ful result if tim starting 77w distribu-

tion is taken (o t)(, tim( giv(,ii by linear theory. Th(' wtlue
of 57w(C/2) given 1)v equation (91) is equal to (47/7r) at

small r, and a ttaitts a maximum valu(, of unity when 7=0.490.

The da.ssieal ileralion methods of subsonic flow theory

have not shown such an abrupt termination of solutions
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upon attaillmeiit of soilic vcl,)ei{v. '['he saute situation

occurs with the pr(,sent (,(tttatiOllS if the iteration procedure
is alt(,l'('(I so as to conform with the classical metho(ls. This

change consists simply of suhstittttillg _'z-w trite not only the

integral of equation (66) but also the term _w2/2 standing

outside the integral, thcr(,I)v converting the quadrati(.

equation for _,, into a linear equation. If this procedure is

adopted together with the same value for the integral that

was used to obtain equation (91), the result of the first
iteration is

"ffw(2):41r 7+0.295_ (92)

Since a linear equation is solved at every step of the iteration

process, the procedure never t.ermillates. Values for _- in

the midehord region t)ecome larger with every iteration step,

however, and it seems to be the prevailing belief that con-

vergence is obtained only for Math numbers less than the
critical.

It is of interest to compare the approximate results of the

first iteration step reviewed above with the exact restflts for

the same airfoil given t)y tlantzsche and Wendt in reference
32. If the latter results are made comparable to the present

results by taking the limiting value corresponding to small-

disturbance transonic flow theory, the exact result of the first

iteration step is

(c"_ 4_. /,5 1_x72 4 72_w_/=;: _+(_-4) = 7+0.2.57 (93)

The first term of 1)oth equations (92) and (93) is that given

by linear theory and is the same in both calculations. The
difference in the coefficient of the second term is the r(,sult

of the errors introtluce(l in the approximate solution of

equation (61) (i. e., the velocity-distribution ftmction, finite
steps for _w, etc.) and is some sort of a measure of the accu-

racy of the approximate caletdations. Just as with equation

(92), a value for ;_,, can be calculated for all 7, although the

question remains of whether the result is a valid first, step in

a convergent process.
If Hantzsche and Wendt had performed their iteration

calculations in a mamler comparable to that described herein
so that the values of _L are not introduced as an approxima-

tion for _ in determining the important influence of the points

lying near P, they would have obtained the following relation

(again to the approximation of transonic flow theory) as the
result of the first iteration:

: 1± £8 --]-111087; (94)

This result is directly comparable with that given in equa-

tion (91) except that the double integral of equation (61) is

evaluated exactly rather than approximately. Again, the

aceuraey of the approxunations can be evaluated by com-

paring the two equations. More important, however, is the
fact that the exact results also terminate when _ exceeds a

certain value (0.503) and that the corresponding value for

is tinily. This subject is discussed in greater generality in
Appendix B.

As noted above, the first step of the l)rt'sent iteration pro-
eedure start.ing with u'L produces maximtnn values for

that are too large. Consequently, the calctdations terminate

at a value of . the! is somewhat less than corresponds to
the true critical Maeh number. Solutions can he obtained

for the remainder of the suhcritieal NIach number range,

however, if the starting uw is sele('te(l having the same general

form but larger values than the ('orrespondil,g U'Lw distri-

bution. A good starting distribution ('an t)e obtained by
simply extrapolating the final results for smaller r.

Calculations of the type just descrit)ed have heen carried

through for several values of r less thtul the critical value

(7_--0.598), defined as th(, smallest value of 7 at w}li('h sonic

velocity (_w=l) is attain(,d in the final transonic solution.

The results of these calculations are presented in the form of

chordwise _w distributions for various + in figure 22, an(1 in

¥ =.500---,

.400--- xx\ \\

.2 .4 .6 .8 1.0
£/c

FX(;URE 22.--Chordwise variation of _w for various 7 in the subcritical

range.

the form of curves of -5,, versus ; for various Y/c in figure 23. 3

The corresponding values _L_, given by linear theory are also

shown in figure 23. Comparison of the two sets of curves

reveals that. the values of uw coincide with those for _, at

3 The results for 7=7_ are also it_cluded on the_se graphs in order to complete the subcritical

range, even though they are obtained using a different iteration procedure. Since the pro-

cedure is the same as that described in the next section, however, no further comment is
necessary at this point.
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FIGURm 23.--Variation of _w and _L W with 7 for various values of 5:i"c. Subcritical range.
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small 7 (low Maeh number) but become larger than those for

uLw at most stations on the airfoil as 7 approaches 7_,. These

trends, whictl are in accord with generally accepted experi-

mental and theoretical results, will be discussed at greater

length in a later section.

Shock-free supercritical flows.--Although it is indicated

in the preceding discussion that the present iteration process

does not lead to supercritical shock-free flow about airfoils

when the starting point for the iteration calculation is _L, it
is considered of importance and interest to ascertain the be-

havior of the present approximation when such a solution is

deliberately sought t)y starting with suflic.iently large values

for g, that I is greater than L. The interest in this matter is

heightened by the fact that the less detailed method used by

Oswatitseh leads to such results over a limited range of super-
critical Mach numbers. (See figs. 4 (c) and 4 (d) of ref. 20 or

figs. 7 (c) and 7 (d) of ref. 21.) Accordingly, iteration calcula-

tions have been performed starting with 7 greater than 7_,

and a symmetrical shock-free Uw distribution containing a

region of supersonic flow (_w_l) over the middle portion of

the chord. A slight change in the iteration procedure is

necessary, however, to eliminate the difficulty arising from
the requirement described in an earlier section that I=L

at the sonic points. To carry out the solution in the same

manner as before would require that the _iw distribution be
found for which the corresponding I curve is tangent to a

given L curve. Rather than attempting to find solutions by

II-- Assumed u_-__

(_ :.65)

-7 I ,--%j
t / _',k

/ I<o,

/,

-7

//

UW/ _\

t, /
'% j;

I
/X',,_

4"/

4
/
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such indirect means, a method is used in which a new value

of 7 is determined in such a manner that the tangeney con-
dition is fulfilled. In particular, the proccdure is to calculate

the I curve using equation (79) and the assmned values of 7

and 5w. The next step consists of plotting the I curve and

fitting an L curve computed from equation (86) for whatever

value of 7 is necessary to fulfill the tangency condition as

shown in figure 10. A new set of values for g,. can now be

calculated using equation (59).

_w=t _ _/I--L (59)

where the minus sign is used at stations upstream from the
forward sonic l)oint and downstream from the rear sonic

point and the plus sign is used for the internwdiate stations.

This process has been carried out for a munbcr of assumed

initilfl _w distributions. Figure 24 shows a typical set of
results obtaine(l by starting with an initial value for 7 of 0.65

and a _w distribution obtained t)y extrapolating the trends

indicated by the solutions for suberitical flows. The as-

sumed initial distribution is indicated by a dotted line in the
upper portion of part (a) and the associated I and L curves

are shown immediately below. The tangency requirement

is fulfilled by taking 7=0.642 which compares well with the

initial value of 0.65. The corresponding _.w distribution

calculated tilerefrom is shown in the upper portion of part (a).

Several points of interest are to be noted. Tile first, of
course, is that the assumed and calculat.e(t Uw distributions

• ,
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FiouaE 24.--Results of successive iteration steps in an attempt to find a shock-free supercritical solution.
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are distitwtlv dissimilar. The st,toad is that tht, calcuht{ed, l

distribuliot_ btmt's a marked r,,st,mblatwe It) a t'(,sult given
/

bv ()swalitsch (st,t, fig. 4(d) of t't,f. 2(t or fig. 7(,t) of ref. 21)
whivh may It,, dr,scribed as a svmnt(,trica] _w distrilmtit)n

containing lilt abrupt t,xl)atlsion ou ttw frotlt of lht, airfoil

and a eon_pr(,ssion sho(,k synlnl(,tri(,aily sittmtt,d on the roar
of the airfoil.

_iSlet' the assum(,t{ and caleuhttt'd _u, distt'ilmliot(s art' loo

(tissimihu' to I)o rogar(h,d as soluliotts, Itw iloralion t)ro('ess

was confirmed, using the ('alcuhttcd resuhs of the first sl('l) ns

the initial values for tltt, se(',)l,d sit,t). TJw rost+lts of this

calculation are sununarizt,d in t)art (b). ,ks indicated, r

changes from 0.642 to 0.671 am[ the new +Tu+distribution is

again marl,:cdly dissimilar to tilt, initial distril)ution. The
calculations have bectt (:arricd through several mort, steps

anti the rosults are shown in paris ((') through (ft. ]t can
|)(, st,on thai the initial and calcuh(lt,d _+++(listril)tHions do trot

agrt,t,, even qtmlitativt+ly, until s(,vvral steps of the iteration

pro(u+ss have been conq)l(,t(,d. In ih(' nw'mwhih_, the vahw

of 7 has <h,crcast,d to al)proximatdy that for the ct'itit'vl

Maeh nunll),,r and the region of supersonic tlmv has ('fit,c-

tively disapp(,art,d. The sixth and last st('f) of the itm'atitm

calct+lations pros(+ttto(t in tigui"e 24 has lm)dtw(,d a valtw ++f

7=0.600 and a Uw distribution nearly i(h, ntieal with that

shown in figurt, 22 for the critical +\[aeh ntmlbor (7,=0.598).

Although this figure shows th(' results of otfly one series of

calculations, similar results have beet( obtained starting with
other asstmwd symmetrical, shock-fr(,t,, sul)t,reritical Uw dis-
t,ributi,)tls. No east, was found in which th(, calculat(,d vahws

rept,at(,(] the ass,lm(,<l vtt]tz(+s tttttil 7 Jmtl <](,cr('as(q] +o ap-

proxinutttqy r, and the sut)('rstmi< + zotw ]rM vanished.

It, should I),, noted before leavi_tg this soctitm that these

results are not prt,setm,d with the intentiot_ of proving or

disl)roving anylhitsg about lilt' mort+ futMamt, ntal (luestiotl
of the exislotw(' or nonexistence t>f sbo('J.:-frt,t, tl'atlsonie t]oxvs.

The l)urt)ose, rather, is to illustt'ato tlw hvhavior of Ill(,

t)reset(t appr<)ximation furnished by the simplifit,,l inlegral

cquatiotl and the iteration mt'lhod of solution.

Supercritical flows--shock wave forward of the trailing

edge. +-The prcceding section Ires shown how tit(' l)resent

method of tmh'tdating velocity dislrilmtions ots thin air-
foils fails t() eonvt,rg<, wh(+n 7 is gr(,al<,r that_ 7_ at.t thc tl+)w

is assumed to 1)t, shock free. 'Pitt, identical ill,ration proc_,ss

wilI ctmv(,rgc rapidly tt) a striation, howev,'r, if tit(, inilial _w

(listrit)ulion contains a discot(tinuity in accord with lht'

shock relations. The method starts bv selecting a value for

7 and assmning a ro,!_sonable dislril)uliotJ for _w over the

chord. Tilt, main point to ol)serve in lho selection of 5.u, is
to includ(' a shock wave (a discontinuity in _',+) Ihrough which

+w jumps from 1-_ .5 immt,diatoty aht,a<l ()f th(' shock l<) 1 - k

imnwtliately bchit_d tho shocl<. As n+)tt,d l)r, viously, such

a jump its _'w is consistent with the ussumlslion that Ill(,

shot, k wave is a weak normal shock. The next st,e t) is to

('ah'ulalt, th(, 1 (+ut'vo using equation (7!i) and the assume([

vahtesofSwand 7. The I curw, is I)h)lt(,<l and an Lcurve

is computed using equation iS6) and whtltcvor value of r ix

necessary to ftdlill tlw tang(,ncy conditiotl, tt_ ilhtstratod in

figure 13. Ant, w set of vahws of _w ('an now b(, cal(:tdato(t

using equation (59), taking prot)er care to change from the

mitres to the plus sign at the p(>itlt of t angency 'rod then re-
turn I,) the minus sign aft of the assunwd shock l)osition. In

this x+ay, a tww apl)r<)xinmtion for Ih(, 5,++ distribution cor-

rcspomling t<) the tww value for r is obtained, but the posi-
tionofthes}m(+k wav(,isunaltt,rt+d. If tit(, new vuhws for7

and _Tw art' st_lli('i_,tttly ('lost, to the assumed valu(,s, it is pr(+-

Sllllle(| thal all at)f)roximat(, solution has t)(,(,n fountt. In

gem,ral, howtw(q', such a close corr(,spondt,twt, is not ot)taitw<l

aft(,r the th.st sit,p, and the entire (.alcuhttiotl is rej)t,at(,<t

using the m'w vahws for r and 5"w it( plat't, of thosc assumt,d
ittitially. TJu'ot+ght)ttt the proc+.ss, tilt, positiozt of the shock

wave is l.:cpt fixed, and the wflue of 7 is allowe, I to vary as

n(,c(,ssary. In this way, the it(,ralitm ])ro('css s('h,cts the

solution for a given shock position ratlwr than for a given

Mach nun_bt, r. This process was carried out with the shock
wave sit,uatc(t at several diff(,rmtt slations on tho airfoil

chord atilt was ftmt,l to cotp,orgt, rnpitlly even ",vtwtt th,'

s('h'etod initial vahws for _,r and r di0',,rt,d consi(hq'ably from

their final values. A tyl)ieal set of results (nanlelv. lhat for'

lhe shock position fixed at (,_O-I)er('ent-chord station) is shown
in ligure 25. In conmmn with 1]w resl of th(' calctflations,

the initial valuos for _'w and ¥ x_crt, soh,('t,,d 1)3- extr.li)()lalitlg

5

lniticl 5,,, (_'=t.043)

First opOrOx. (_=1035)
Second opprox (_=1.029)

.6 .8
7/c

/

t
t.0

t:s<_t'lo+:25. lh.suhs of iteration calculati_::s with shock wave at, 90-

percent chord.
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the trends indicated by the calculations for more forward

shock positions.

Calculations of tile type just described have 1)een carried

through with the position of the sh<)ck wave fixed at 60-,

70-, 80-, 90-, and 100-percent ch<)rd. The results are
l)resented as ehor(twise _Tw distvihutit)ns for various 7 in

tigure 26 and as the wtt'iatit)n of _w with 7 al selected wdues

of "_/c in figure 27.

4.5

4.0

5.5

3.0

2,5

2.0

[=.855 ...... t_/_

1.0

O' J "_

.5

i t

L,
-1.o

0 .2 .4 .6 .8 1.0

E/C

FIt'I:RE 26.--Chordwisc variation of _w for various _, shock wave for-

ward of trailing edge.

In ordt,r to tcsl tile method further, calculations were

repeated in many of the cases using a different set of initial

values for 7 and Ww. The results of two such calculations

for the shock pt)sition at the 90-perct,nl-chord station are

shown it, figure 28. Ahhough the results shown in part (a)

were ot)tained using values for u'w that were purt)osely

selected to t)e too large and those of I)arl (h) to 1)c too small,

it can be seen that similar results are ot)tained after only a
few steps of the iteration process. These same results are

presented in a seeon(l nlamwr in figure 29 wherein the wdues

of U'w at, st, v(,ral stations on tilt, ('herd are plotted as a rune-
lion of 7. The timll w_lues to which the calt'ulations con-

verge (i. e., those given in fig. 27) arc, indicated by the solid

line. The points ('omw('tt,tl by the tlotted lines are the

values obtained at ea('h ste t) of the calculations. It, may

t)e seen that the t)resem procedure appears frst to place

the values of U'w and ¥ on the curve of correct solutions and,

subsequently, to converge to the final result.

Supereritieal flows---shock wave at the trailing edge.--Thc
calculations just descrit)t,d indicate that tile shock wave

moves rearward wilh increasing 7 and rea('hes tile trailing
edge when 7---- 1.34, t.orrt,si)tmding to a Mach numl)er of 0.92
for a 4-percent-thick cir('ular-arc section. Tile calculations

for larger subsonic Maeh numbers were performed under

the assumption that a strong shock wave remains at the

trailing edge. As in the 1)reeetling amdysis, the shock wave
is assumed to stand perpendicular to the x axis, and the flow

is assumed t,o be normal to the shock wave, even though
these conditions cannot 1)e correct at, the base of the shock

wave since the flow must turn through a finite angle.

The method of calcuhdion used for the higher Mach

number range where the shock wave stands at the, trailing
edge is essentially tlw same as that used for mixetl flows at

lower Mach numhers. A slight modification enters in that

the I curve is cal(.ulated by means of cquatioh (g0) rather
than (79). This change is made because the contribution

of the region immediately behind the trailing edge t)ecomes

of increasing significam'e as lhe Math ]mmb(,r approaches

unity. Since the eonlrihulion is small at the lowest NIach

number for which the sho(.k wave is situated at tilt, trailing

edge, no significant discontinuity is produced in the resuhs

by this change in l)rocedure. A difticult y arises in the itera-

tion process, however, because there is no longer any dis-
tinguishing feature to fix the value of 7 for which the solution

is being sought. To review, for" pure subsonic ttows, 7 itself

can be maintained at a fixed value front step to step in the

iteration process. At Maeh numbers somewhat greater
than the critical, where the shock wave stands on the airfoil,

the tangency requirement makes il dilficult to prescribe 7

directly but a satisfactory method is ol)tained by fixing the
shock position and carrying ottt the iteration process until

the associated value for 7 is found. At still larger Mac,t
numbers, tire first method is of no avail and the second

method cannot produce a unique result since the shock wave

is considered to be fixed at the trailing edge over the rest of
tlm range of sul)sonit, free-stream Mach numbers. For lack

of a better method, the calculations were carried out for

this range using a procedure that might be descril)ed as
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-I

7

//

(a)

Approx

-- initial I. t O0
....... First .864

.... Second .975

..... Third .974

.... Fourth .997

Fitth 1.006

---Sixth 1.015

//
/
/
'I

/

(b)

2 .4 .6 .8 1.0 0 .2 ,4 .6 .8
2/c Z/c

(a) Initial aw too large. (b) Initial aw too small.

tQ¢Hra).: 28.--Results of iteration calculations started with deliberately poor assumption for fi_, shock wave at 90-percent chord.

being partly iteration and partly trial and error. The
calculations proc, eed as follows: A value of 7 is selected

and an estimate made for the associated _, distribution.

On the basis of these values, calculations are performed

resulting in a _mw set of values for 7 and _w. Similar cal-

culatio)ls are repeated on a trial-and-error basis using
the same _,, distribution but various values for 7 until

the resulling 7 is equal to the assumed value. These
values are then plotted on a graph of _w versus 7. If these

values were an actual solution of the integral equation, the
resulting values of _.w would also be equal to the assumed

values. In the present calculations, however, the resulting
values of _w are generally found to be somewhat smaller

I.O

than the assumed values. These new values for g_,, to-
gether with a smaller value for 7, are next taken as the start-

ing values for a second series of trial-and-error calculations.
Again, the gy distribution is held fixed as various values are

tried for 7. The calculations are again terminated when

the value of 7 is so selected that it repeats itself. The values

of gw and ¥ are then plotted on the graph. Unfortunately,
it was not found possible in the present calculations to de-

termine a set of values for gw and 7 that would repeat them-

selves precisely. In all cases investigated, the values of
_,. and 7 were found to diminish somewhat in successive

iteration steps. The source of this difficulty has not been
ascertained at the present time. It could be due to one or
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Fret:RE 29.---Results of calculations with shock wave at _.10-percent

chord. ((:ross plot of dala in figures 25 and 28.)

more of tile simplifying assumptions itltroduc_,d in the al)-
proximate calculations or it, ('ould be due to the fact that

an iteration process was not d('vised which would lead to a
definite result,, as at smaller 7.

There are a tmm|)m" of points, however, which tend _o
indicate that the succcssiv(, values of _w anti 7 obtained

after the first few iteration steps may t)c regarded as near
solutions. One of these concerns the fact that calculations

made starting with different initial values for _Tw and

converge to a common r¢,sult after the flrst few iteration

steps. To illustrate, results of typical series of calculations
starting with 7 of about 20 and three different U'w distribu-

tions are shown in figure 30. it can be _(,(,l_ l}lat the three

sets of ('al('ulations all converge t.o determine a single Iin{,

after the first few iterations. In order to promo{(, insight,
into the significatwe {}f the indicated variation of 7 from sh,p

to steI) of the iteration t)rocess, the corresponding Mach

numbers for a 4-perc(,nt-thick section ar,, also) showlL

Comparison on this trusts shows that the variatiun of Math

numl)er from step to step of the iteration process is v(,ry
small.

2_

16

--- EquohOn {98)

/
I

-4-___

f

j _-'T7

Mofcr t/c= 04 _3_ _'-_ j
i

-8 l l i I 1

0 8 IL 24

f

t,'m_:lll,," 30. --I{o_ult,_ of iteration calculations started with d(,liberately

poor assumption for #w, sbock wave at trailing edge.

An additional factor lending credenc(, to the applicability
of the solutions for large 7 is provided 1)y the ph(,nomenotl
of the Maeh number freeze wherein the local Math number

is invariant with changes in the free-stream Math number

when the latter is near unity or, more precisely,

(di' 
d.llo,/M,._ 0 (95)

It is known from the papers of Vinc(,nti and Wagom,r (ref.
14), Liepmann and Bryson (refs. 28 and 29), and others that

the corresponding approximate relation yielded by the small-

disturl)ance transonic theory is

i/,_, ]_o_o (96)

If the parameter _- involved in the definitions of ( is indc-

pen(t(mt of ,11o, as is the ease when k is taken to be as given
in equation (17), and if the local Math nmnt)er J/ is cal-

culated using equation (24), the above two relations are

completely equir_tl_,nt. If k c(mt_dns :1[ o, however, _s it

does in the preferre(l definition given in equation (7), dM/d_llo

only va_fish£,s wl.,n AI, as well as Me, eqmds _nity. If it is

assume(t thai the freeze extends over a finite rang,, of Maeh

mtmbers, the varia(itm of _ with 7 must obey the followir)g
r(,hdion for lar/(' 7:

g--I
(= _7_-=eonst,. (97)
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Equation (97) has been used to comput:e a curve of _w

versus 7 under flw assumption that the freeze extends at

least to as small a value of 7 as 10, which corresponds to a

Maeh number of 0.978 for a 4-percent-thick section. These

lines, which all have the characteristic fornl

(_Tw);=,0-- 1=\10/ (98)

are also shown in figure 30. It can he seen that the lines so

deternfined are ahnost identical with those determined previ-

ously after the first few steps of the iteration process. This

comparison shows that th(, solutions obtained by the iteration

process possess the ph(,nomenon of the Math number freeze.

A further check was nlado [)y extrapolating the curves of _w

versus 7 to 7=40 with the aid of equalion (98) and using
the values thus obiaim,d as the initial values for an iteration

calculation. ]t is found that these values nearly satisfy the

int, egral equation although the values of 7/w and 7 diminish
slightly from step to step during the iteration process, just

as at, the smaller wdues of 7. The significance, in terms of

Maeh number, of these changes is even smaller than at

lower Mach mlmbers. For example, the ct)anges produced

in the values of ._. and 7 in the first step of the iteration

process correspond, for a 4-percent-thick section, to an

indiscernible change in the local Mach number and a change
in the free-stream Mach number of less than 0.001. On the

basis of these results, it appears proper to extrapolate the

curves of _w versus 7 to values of 7 approaching infinity,

corresponding to a Ma(,h numl)(,r of unity, by using equa-
tion (98).

The results of the calculations for the range of 7 for which

the shock wave is at the trailing edge are summarized in

figures 3l and 32.

RESULTS

RESULTS IN TERMS OF REDUCED QUANTITIES

The calculations described in the preceding sections have
produced values for the velocity distributions at the surface

of thin circular-arc airfoi]s in flows having free-stream Mach

numbers ranging from zero to unity. These results are pre-

sented in graphical form in figures 22, 23, 26, 27, 31 and 32

in terms of the reduced quantities g and "7 defined in equations
(29) and (84) and repeated below.

k Uok t
U--l___lo_ u, r--(1--Mo_)3/2 c

where k represents the coefficient of the nonlinear term in

the approximate differential equation for _ (eq. (6)).

The results of a number of previous investigations of
transonic-flow theory have been presented in terms of the

quantities _o and _ defined in equations (87) and (88)

1 --Mo 2 1 --i 2
_o [Uok(t/c)l_, _-- [Uok(t/c)]_/3

The relations between the two sets of quantities are given

by equations (87) and (90)

/ l'x w3 ____-- 1

l&
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FIGURE :{]. (?hor(twise variation of _2w for various 7, shock wave at

t r'dling edge.

Pressure distribution.--In many applications, the quantity
of primo intorest is the pressure distribution rather than the
velo('itv or Ma('h number (tistril)ution. Because of the

siml)b_ rehllion I)(,twe_,n the pressure coefficient and the

perturt)ation velocity provided by equation (16), however,
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it, is a simple matter to dcternfine tile pressure distribution

once the velocity distril)ution is known; thus,

C,: 2u 2(1-JU)_ 2(t/cW3 / _ "_
Uo Uo_. u=-¢yOk)_?_ t 7_j_) (99)

Tile latter expression for ('2._suggests the introduction of a
reduced pressure coefIicient ('p defined by

,/3 { _ N

-_ (t/c)_/_ -,- . _7',/3!

Equation (100) may be rewritten in torms of _ and } as
follows:

(',= - 2 (_-,_o) (lo_)

I _e foregoing results have been used t_o calculate (' forp

numerous stations on the airfoil chord for various }o (or 7).

0 .2 .4 ,6 .8 4.0

(a) Subcritieal.

FI_:UI_.E 33.- Chordwisc variation of _'p for various ._....

The l'csults so ohtaincd are presented in figure 33 in the form

of chordwise prossure distributions (('p vs. 2/c) for various

}o. This figure is prcscntcd in thrcc parts: Part (a) contains

the results for subcritical Math mind)ors, t)art (h) for slightly

supercritical Math mmlhers for which the shock wave stands

on the airfoil surfa(m, and part (el for still larger Math mlm-

hers for whieh the shock wave is at the mdling ('dge.

The same results are l)rcscnled in another manner in figHl'e

:34 in which thc variation of ('p with },, is plotted for various

stations 2/c alontz thc airfoil chord. This fornl of t)rcscnta-

tion is the counterpart, in Lerms of rcduced quantities, of the

plots commonly found in many experimental investigations

showing tile variation of prcssurc coefficient ('p with free-

stream Maeh numt)cr _l[o at l)rcscribcd l)oints on the surface

of wings and bodies. The corrcsl)onding curves given by

0

tO
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linear theory are shown in figure 34 by dotted lines. These
curves are computed using the equation

_ .-_o _-c in c-_

obtained by direct substitution of equations (87) and (100)
into equation (85). It can be seen that the present results

and those of linear theory arc in good agreement for values

of _o eonsiderat)ly less than zero. For _o near to zero, how-

ew,r, the l)res('n_ r(,sults display a behavior completely dif-
fiwcnt from that indicated by linear theory. This is as it

shouhl he since it is well knowa that linear theory is totally

ina(lequate for tim analysis of steady two-dimensional flows

about airfoils wh('n the Math m,nber apl)roaches unity, or,

in the present ,otati(m, when _o approach(,s zero.
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FIGURF. 34.--Variation of C_, with _o for various _/c.
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In order to provide further informant ion regarding the sig-
nificance of the indicated variations of ('---_with _o, lines of

constant $ have also been included in figure 34. The local

velocities are subsonic if _ is negative and are supersonic if

is positive. The Mach number freeze is indicated i|1 figure

34 by the curve representing the variation of (-'_ with _o at a
given station _/c becoming paralhq to a line of constant _.
It can be seen from this figure that such behavior occurs at all

stations on the airfoil for _onear zero.

Pressure drag.--The foregoing paragraphs have been
concerned with the determination of pressure distributions

on thin nonlifting circular-arc airfoil sections. Once thesP

results are known, it is a simple matter to determine the

section pressure drag coefficient ca

=2 t'° dz.
pol-T2 - CJo C_dx (103)
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II is convenient, at, this point Io itdPodm'e a Pedueed seclion

drag co,-[[icient G detined in terms of rvdm'vd quanlili_,s,
thus

Cdo (-'" '_ (104)

It is cloill • fl'Olll the definitions of (v, r, Z, nnd 2 thut lhe

relation between c_ aml _ is

'2 J]7
-- (¢'°k)_/:_ C ,tZ,, &. =(/',,,_')',':_
ca= (t,'c)"":* ¢; " dx (t,c):. _ c_¢ (105)

It, should be remarked lha! some additimml/q'l'OP is ilmum,d

in the pt'{,senl calcuhtlions of drag because lhe pressures ave

]aP;ze and only poorly determined in the vicinity of the lead-

ing and trailing edges.
The variation of _ with (o has been computed and the

results are shown in figure 35. It can be seen that _ is
zero for G less thnn --1.418 (corPespondin_ to the ('Pilicnl

Maeh mmtber). The rapid rise of _ as _,, is i/wPeased t)_,-

yond lhe critical is associated with lhe reaP_vard movement
of the sho{'l_ and terminates al)Puptly when the shock rea('hes

the trailing {'(lg(' at G=--{).825. The drag {.{){,Itieieni con-
tinut's 1o itwrt,ase slowly with further incr(,ast,s {}fG allhou,£h

at, a much reduced rate" an{I, thmlly, at a value of _o some-

what_ less than zero, G 1}ecomes invariat,t with fuPlher changes
in G. This latter behavior is associated _ith the .Xlach

IIH1]I}}OI' fl'eez{_, thus,

"c 77"- _ --

_,,1_<,&:,, c d,, \,l_,,,Ao:O d7 d7

=--c,)0 \.d_o I1_.=0 ¢17' ('_ (106)

."4Jim{, the Maeh nttml}eP fre{'z,' c{)H'.-q_{,l_{ts, in th,' a]}l)roxi-

mat.{, {h('oPv t{} (d,_/d,_o)_o ,0-0, {'qunlion (106) may be

siml)liliP(I to t]., following f()rm:

;k_;A ,}:-:i;d_ d7

-:4[(z.)T, ] (10v)
where (Z.),,E and (Zu)rL. Iefet' to lhP o/'dimttes of the upper

suPfam, al lhe ]eadinff edge aud lrai]iHg edge, respectively.
Silw{' l}.lh of l].'se quanliti{,s are z_.Po f{_t' the {'ircular-a/'c

airfoils t i'eat(,d h(q'{,in, it follows that

( _ _ :,, 1108)
_'d_o.A.=o

The {'Orl'eSI)on{lit]g_ results fro" synltlwlr'ical d<}uhh+-w(,,lg{_

t)rt}fih,s given in r{,f{,t'i,n{'{,s 17, 13, un<t 14 by Trilling, (;u(h'r-

ley nnd Y,+shihara, and Vi_m(,nti nnd Wag.net, r{'sl){'ctiv(qy ,

apt, also shoran in figure "15. l_2xc,'l)l for the vahw of _ nt

G=0, lh{' lwo sets of results t)(,aP {rely a {tualilaliv(, resen:-
t)hmce. In s{}m(, cases, the reason for flit, ditr{,rt,ne{, is

cloar; in (}l}lOr {HI_OS, {]11! I'('llS()IIS ill'I{ lllOl'O OI}S('III'O. All

examl}le of the formeP con{'ePns tl.' result /hal the drq V .f
t,h(' ('ir('ular-arc s{,clion is z{,,'o fop e h,ss than --1.41},'.;,

whereas the drag of the {Ioubh'-w{'dge section r(,n]ain_ flair,'

for all G. The latt(,P })ehavioP resulls h'om lhe fact that the

cPilienl Xlaeh ]mmb{,r is zero for the (hmbh'-w('(tge sectio_t.

The reasons fop the I}rOnOUnC{'(t diff(,renc(, in shape between

the two curv(,s for drag at sut)sonic speeds are not so clear.

The immedi'de exphmation is that the shock wave moves
rearward across the chord of the circular-are airfoil at a more

rapi{1 tale than it (lo{,s wilh lhe {loul}h'-wedg{_ airfoil. F.P

the cireulnr-nve airfoil, the shocl< way, has moved t{) tim
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lr_lilin<..,' ('d_z. wht,ii _,, (,q/.ds --i).,S:25. Thi_ coNdilion lmlrks

111. t'11_i of the rapi(I irlt'1't'll_, ill lh'a_. O11 the Otlll,r h_ll.1

Tl'iHilUz's I'_'_llll_ for 11., tl.uhle-w_,d_l, itirfoil i11dk"llt' thai

the SJlocl_ way(' i[.i,s lltit, i'_,_lt']l thl, t1'ailill_ I'_]IZ_' Ulltil I]H'

fl'e('-Stl','ain Milch Ii,llllh.r i._ llMty, tw _7,, 0. Wlllq]l(,r this

dfft'('r('l.', i., _lll aclllli] llr_qi.rly of Ih. Sl)llliiOns o[ lt'allSlmic

small-(list_lrt.llW(, theory for i}.'s_' l_vo lWotlh's, or lb. result

of ._inlldifyill_ llSSmlllHi.liS inll't.hl_'t,t] ill either 1]le prestmt

•,llalvsi._ Ol" t}ull (if Tl'illinlz 1'eiutlillS tin UmUlSWer_'d question
•ll llw pl'PSellt tinle.

RENI!LTS IN TFIIMS OF PtlYNICAL {ItIANTFI'IES

TIw l)r.c._till_ Sl,_'tiol_ h11s SllmmtMZl,d tJ., l'l,Sll]ls of the

prt,st,lll I'al(!ubdi()us of ttw pl'('s,_Ul'(' dislril)lltiOll lind tMIg of
thin eircllhlr-al'C lilt|oils ill Ihlws having fr,,-Sll',mn XIaoh

nHnlt)(,i',_ lip lo unity. 'l'h(,s, l'PSlllls Ill'(' giV('ll ill l.('l'illS Of

till' 1'l'dliCl'(1 1)ili'iliileil,l'S _'_v. C'T, lili(] _,_, w|IiCii pOSSess lJie li(I-

VliillliTl' of t'OlidUli_ill_ l lil' illfoPliitllioli for all lJliei,:ness l'lil los

o11Io ii siligle Clif'vl,, hul llw di._l/(lVlilililKe of beili 7 Si)lilO-

w]iill i'Offlpliclilcd aii(t lirlflifnililif'. ('(limt,qllOlit] V ii i_ |hi'

aim ii[ llii_ _Pclion tlt i't,-l,xllrPss thl'_e l'l'Sli[ls in l(,i'liis iif liie

lli_li.i, C()livcrllioliilI quliiililies ('_, ca, ,ll,,, ,<u111 t/e.

Critical Mack number. -All ltil'fOil iirot)l,i'ly llull is 'iiwliy.s

(l[ iille1'_,M is 1!il, c1"ilit'al X|lil!h liumlll,i', .1[+,. TJie Vlil'ililitm

oJ' tile cl'iiiclll =_laeli lllliii})ep _vil]l itliekness l'lilio eltll lit,

felt(lily _ll'lei'lninud fl'Ofll 1.ht' i'l,SU]l lJint &-r:=--l.40,_, lhils,

_<" :-It 'o,4:(t/c)]_,':,.... 1.40s (i 09)

In i lli_ lili(I in l]le i't,nnlintil,f' of l ile discussion, it, is lissulued

wiieiievep tile i'eslills of i11iiilt,i'icli] COliiJ)lllitliOilS are |)i't_-

SOtllt,d ltult /(: is IL_ tlt'finl_d ill t'qulilit)n (7) tint] l]illt T is

t,qutll I() 1.4. Figur(, ;16 SilOVCS il lih)l of the 1't,s11It_ ()f these

calClillit lolls ioTeiher

Ioo

96

.88 '.

.8O

,76

_villi tlle corr(,._ponlihl_ i'i,Sliils oh-

/--Li neor t"heor y

l//_-K_rm_rI-Tsien

/ /-Present colgule]tlons

I II

.72
0 02 .04 .06 .08 .10 .t2 .14

Wc

|"l_:l:Rb: 36.--Variation of critical Math litllnl)(;r with tllickIlu,_J raiio

fop circu|l.ir-arc ah'foil.

iaiiWll us|It 7 611 liilt'al' lh(,()ry lili(] (h) ltlin-ilh'foil lhl,o1'v for

iliconil)l'l,ssit)lc tillW loKelJitT wilJi the I_l11'nii_ii-'l'sieil i'/ilP ll)

li('('t)lllll fop llie i,J]'(,cl (if conllwl,_sihiliiy. Ill h(HJl of till,

lilllPi' e11h'lihitions, tile vlirhition ()f ('_,<, _vilh A[, was ih'iei'-

fllilie(t llSili K eqi1111ion t23, I1:4 i_ CllslOlillll'%" ill t'iiTiiWl'l'iilK

prliclictL ]i t'llll I.' st'i'll 1||lit iht' l)l'CSelll calcll|iilions ili_li-

clilc liilll li1<' Cl'ilical Math lliiillM,l' is soiiieWJllit less liilili

givt, n 1)v t,illiel' |till,ill' tht,oPy (if' h v lJie |(llf'nilili-Tsiell niel}lt)(1.

"PilLs i_ in llocof'd wilh the l'l,Sliils fOilll(t w]icn lhe inlil't, t'xlict

t ilt,ol'ie._ ill'(' l_pplil'd lo thin |lit'foils.

Pressure distribution.- The ftlrt,Koiii 7 gt'lit'rlll re,_ulls havo

I)t't'il llppii_,d Io delel'lililiC iht' |)l't'ssui't, (lisli'itmlioliS Oll 0.

4-Iiel'Ct'lll-lliick cil'Cll]Itr-ill'e profih'. Tllc_e rt'stllls ape

I)l'eSUlill,(l in lWll liitt,l'liillive fOl'lns ill figul't's 37 liil(I 3,_. Thl'

[il'sl. (if tilt,S(, shllwS lilt' eilOl'(lwise Vl/f'illliOll (if (_, for viii'lollS

fi't'e-Sll't'l_lil MiicJi illillll)t,l's lllid ilhi_Iralt,s lilt developnient

lilid i't,iii'Wlii'(t illOVei_ii,lll, of I}1t, ._]lOOk wave _t,_ lhe :fl'_,u-sli'(,lilil

M[llO]l liuinl)er iliCl'ell._t,s beyolid l]le erilicii]. Tilt, ._ecolid

fltl'iii shows the vai'illlion of ('_ witii .lI<, fol" st'llwtt'd ])(linls

7:/c Oll l.he tih'foil (,]1oi'(I. Tlu'l,e sl,l_ (if lluxililu'y |hies ill'(!

li]_o SiiOWil; lht'y ill'I, (ll) lhle._ ()f Cliilslillil, 1oc111 Math lillillt)t'l'

('Olilplll.(,(l llSilig i'qliiit.iOll._ (:24) ail(I (25) it|ill (tJ) ]iDes showing

llie Viil'ial{it)li of ('_ with .1[0 ill.._l'M'll'd t)Oilil_ (ill lit(' llirft/il

(!|It)P(I ('Olili)tlt.('d IlSillg l]lili-aiH'oil lJil'(il'}- for ill(,Oll/])pt,s.<4ihlo

fh)w loK1%Jier with tilt, ](tli'nliill-Tsicn rulo. At Xllioli illllii-

hei's less t,|i_il tile el'ilical, il till1 bt' st,oil tJial lJie t)l'eSSlll'e

Ctle_icit,lil, <'it, li gi',-en pohll. Oll i,tit, ail'foil stir|lice Viil'it,s with

X[li0}i nunlt)t,l" ill li nianllel' sinlihu' lo iht11 pl'edh'il,d hy iiio

K_l'llltln-Tsion Puh'. It, is also llii|)lll'(,il[, fis wlls poinit'd ()tit

I"u'lieP in I_tllllil, cl.ioll will10qlllltiOilS ('-.)2)lllld (L_:]) ll.ii(1 figlll'l'

2, l.Jull_ llw villuo 1o t)t, laken fop lhe ePilictil Xllicii nulniler

tliffl,l'S sligilily (l('p('iilling (ill Will'|he|' lJie 1i111'._ of consllilil

local .\'|licit illllnl)l'f" i/|'t, ct)iil])lll1,(I ])y i lle ]lreSelil ii])])i'oxi-

lillltiflll (t'q. (24)) tit' I)y lilt' eXllcl, ist, lill'Ol)io rcitllit)li (t,t 1.

(25)). The Jri'eKii|tii' I)ehtivior o[ lhl, pf'eS_lll"eS Oil lit(' I'0111'

Jilllf O_" lilt' lih'i'oil Ill _lipei'ci'ilical MacJl nunihePs is llssocilitlid

with the pl/ssaff(; (if l!ie shock wave. At, Xlm'h lllllnh(,l',,i llOiH'

uuily, ti c'oiilpltff_l,iy dill'el'i'll| tt(,hlivil)i" is evilh'nced in which

i h_, Va|lieS of ('p Clilllig¢ with Jfo in ._ucii ti nulnnt,P ilia| till,

lt)olil .'_[lich iiliillilt,i' i'eliluins es._,niially Ct)lisllilil. I)ireoi

OlllCu|al.iou shows t!ial, lhl, ])i'l,sl,nt 1]it,oi'y ]inl)|it,_ the for

hlwill 7 llplll'OXillilile i'i,]lili()il fOl' <l(',,'J.1lo ill li fi't'('-Stl'eillii

XiliCii iillnlber (if Uiliiy. i

,_(',,') 4 '2 (7 +1_dMo M,,:, =TroLl--3 (('9,,,, :,, I"-:U'2 , [r o /I (11())

This |nay t){, c(inipiii'(,tl witJi till, (,Xil{'l r(,hllilln giv(,fl tly
Viricerit, i and ]VltlZOli(,p ill l't'fel't,ncl, 14.

J,',,) ,,4 2
.ll<,,M,,_==._+t--.y!__l ( ,,)M,, , (lll)

+It might be llotod here that nullll.rOllS illvo>liT'.llors h<ive _ive[l the :ti)l)roxinlate relation

,[f:_T,,/M<=_ v+-I s:= (',,

r_lther thall th:_.l giverl ill Oqll_/,tioil (110). As indieatod by lho 811xi]ittry equ:itions, lhe rela-

tions for dCi,/dAIo at 3/.- 1 follow direet]y from the t)'.lrticular definition of k. It is interesting
to observe th_lt tile e_i)ression for k givi2n in eqll_ltion (7) provides the more tiOOllr81orelatio[L

for (dC_/d,%f_)M.-1, _wo:l HlOllgh. :is liO|e(l ill (!onlll_PIloll with the (liscussi_m of equation (96),
it provides the lesser :_.oouraeyhi the deiormin:lliou of (dA[/dA[.)M_I.
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Pressure drag.--The variation of the section pressure drag
coefficient Ca with 111o has also t)een calculated for the 4-

percent-thick circular-arc airfoil and the results are shown in

figure 39. The general features of this curve are very
similar to those discussed previously in connection with the

corresponding curve of figure 35 for the reduced quantities.

The major point of difference concerns the slope of the curve

at a Mach number of unity. Thus, the preceding discussion
has disclosed that d_/d_o is zero at a Macll mtmber of unity;

whereas figure 39 shows that dc,t/d]io is negative at 31o= 1.
Direct substitution gives the following value for this slope:

(dCd_o) = 2 (Cd)M=, (112)
M. ffi 1 3 "

Vincenti and Wagoner have shown in reference 14 that the
exact relation for flow about a closed airfoil is

( dc_} (c.). =, (1 3)
X 2

1
:<.,--¢4] °

The negative value of the slope given in equation (112)

arises from the fact that the q_.uantity k which appears in all

the reduced parameters c(_d,Cp, (o, etc.) is a function of _Io.

If, as in many other papers, k is equated to (3"+I)/Uo and
is thus independent of _Io, the value of the slope is zero,
thus

k x+l
",t*_v_./Uta--XT".=0, = U.- (114)

COMPARISON WITH EXPERIMENT

Inasmuch as the results described in the preceding sections

were calculated after making numerous simplifications and

approximations, not ttle least of which is the assumption of

inviscid flow, it. is desirable to include some comparisons

with experiment. This is particularly true for the present
protilem since it is well known that phenonlena outside the

scope of potential theory, such as separation, boundary-layer

shock-wave interaction, etc. are prominent features of tran-
sonic flow about airfoils. Since it is in(ticated in the pre-

ceding discussion that the prese,t resnlls are in general

accord with the l)roven Prandtl-Glauert a,d Ktlrmtln-Tsie,

results in the subcritical Mach number range, the following

remarks will be confined to the supereritical range.

There are at least three papers availal)h, which present

results of detailed measurements of flow at high subsonic

velocities about symmetrical circular-arc airfoil sections,

namely, reference 33 by Liepmann, reference 34 by Liep-
mann, Ashkenas, and Cole, and reference 35 by Wood and

Goo(h,rum. The first two.of these are concerned primarily

• with bollndary-layer shock-wave interaction arid contair_

statements casting doubt on the accuracy of the values in-

dicated for the free-stream Mach number, a quantity of only

secondary interest in their investigations. In general, it

appears thai values given for .A,fo in these two papers are

somewhat too great. The more recent investigation of

Wood and Gooderum appears to be better in this particular

and possesses the a(tvantage of being made with an inter-

ferometer so that knowledge is gained about, the entire flow
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FIGURE :_8.-- Variation of C_ with Mo for various values of x/c, 4-percent
thick circular-arc airfoil.

field. A disadvantage, however, is that the tests were made

using a 12-percent-thick model, which severely strains the

assumptions of transonic small-disturbance theory. Never-
theless, the comparisons will be made with the data of
reference 35.

The studies of Liepmann (ref. 33), Ackeret, Feldmann, and

Rott (ref. 36), and others have shown that the boundary
layer can have a profound influence on a transonic flow field.

This immediately raises a question regarding the usefulness

of a potential-flow theory, such as the present, which dis-

regards the boundary layer completely. In order to illustrate

better the nature of these effects, two interferograms of the
flow about 12-percent-thick circular-arc airfoils are repro-

duced from reference 35 and shown in figure 40. The free-

st.ream Mach number is 0.88, and the Reynolds number based

on the chord is 600,000 for both photographs. The condi-

tions for the two flows differ in that the boundary layer is

laminar in the flow pictured on the left and turbulent in

that pictured on the right. The interferogram for the

laminar case shows that the shock waves are of the X type
and that the flow separates near the midchord station.

When the boundary layer is turbulent, however, it may be

seen that the shock wave is of the simple single wave type,

.024

.016

.008

/
.b/

.88

/

.92 .96 1.0

Mo

FIGURE 39.--Variation of cd with _1o, 4-percent-thick circular-arc

airfoil.

and that the extent of the region of separated flow is greatly
diminished. From this pair of photographs, it is apparent

that two of the simplifying assumptions introduced in the

course of the present analysis (i. e., (a) no flow separation

occurs and (b) the shock wave is a single normal wave) are

in better accord with the physical phenomenon if the bound-
ary layer is turbulent ahead of the shock wave than if it is

laminar. Figure 41 shows experimental pressure distribu-

tions determined from the two interferograms of fgure 40
together with the corresponding theoretical results. Because

of difficulties in interpreting the interferograms, the experi-

mental pressure distributions presented in reference 35 and

reproduced in figure 41 are terminated at the separation
point. It can be seen that the theoretical results are in

substantial agreement with the experimental data available

for the portion of the airfoil forward of the separation point.

Althoughthe experimental and theoretical pressure distri-

butions matched equally well for all the test data of reference

35, the degree of correspondence must be attributed, in part,
to a fortunate cancellation of errors since individual com-

ponents involved in the perturbation analysis (e. g., the

relation between w and dZ/dx, Cp and the perturbation

velocity components, etc.) contain appreciable errors when

applied to such a thick airfoil. Ahhough the corresponding

experimental values are not available for the pressures at
stations aft of the separation point, it, is presumed from other
experimental data that the pressures reach their maximum

negative value in the vicinity of the separation point and
return toward the free-stream value at stations farther aft

on the airfoil, rather than varying in the manner indicated

by the calculated results.

Before leaving this topic, the following remarks should

be made concerning experimental factors which may affect
these conclusions. The first is that the authors of reference

35 do not consider the data for the turbulent boundary
layer to be as reliable as that for the laminar boundary
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(a) Laminar boundary layvr.

(h! Turbuh'n( boundary layer.

]el<t m.: It). [nterl'(,rt:,_rntns of flow :tl),.mt 12-lwr('cnl-l[lick circul:tT'-:tre

:drfoil :it a Math II_llll})(_l" of ()+SS :Uld a ]'h'ynohls I)lll)ll)('[' (If ()00,000.

l:r()In refvrt'nt'e :{5.

layer. The reason for this is that tlt<' nwlhod used to make
the boundnrv layet' ttlrl)ulet).t, tilt(, Ul)l)er Imlf of tilt' airfoil

x'++tisnioutHe(I on a tblt plate whi('h extended one chord

h,n+zth forward of the leading e(l+ze (If the airfoil) t)rodueed
sut'h a (hiH,_ t)(mmhtry laver that d ittioult i(,s were et',eounttq'ed

in oorre<'tly exlrapolatinff the lines (,f the i)Herrerograms to

tit(' airf<)il +_uvf:u'('. -_ Th(' ,liffm'en('('s in h()ttt)(htrv-htvt'r

(}li,l.:nt,,<+ art, ('h+arlv (,vi(l(,)tt in (h(' i)iterft'rogramx shown

in figure 4(). Th(, s(,('on(l stems from tl+(' fn(+t tlmt lh(, t(,,qs
+vure uot)(lu('t(,<l with ;) 12-1)(.r(.(+nl-thiek nirf()i]. ('onq)at'i-

s<)tls ,if th(,orv uu(l t,xp(,rim('nt r()r s1+(.Ik llki('1,: ;lirl'()ils li<)t

olil+- strahl the snlnll-di`<lurl)+in<:(, asx1mtl)ti()n_ <If th,' tll(,orv

l)ut a]so t,ml)hasiz(, tin(lift+ + su(.]) f(,atur(,s of th(.' lb.)v," as tile

I ('ui'vtitt£r(' of the s}_()(.l,: wave qnd hot+t)(l+try-hLv('r +el)tlrltti()ll+

",vhi(:h tlre (lisr(,_ar(]('(l ++()mph,t(,ly in (h(' th(,orv. '['hi+ t]lh'd
is ('o)tcern(,d ,vittt It.(. fn('t that (+('st(Its of n l't+<'('ll( I+li_]It,

in'c(,sligtltit>tt hv llarrin (r('f. ;';7i Imvt' ,4,<mn that, tlt R('\-
nohls llllll/})(q'S of IIw order of 2(),()00,(111(), th(,r(, is very

lilth' (lilr(,r(,nc(, in l)r('ssur(' distribution "aith lami)uw am|

turbt+h'n( ])()uli(lnrv ht+'(,rs. In l)nrth'tthtr, it is f<)ttn(l that

the X (ypt' s])o+'k _tt)<] ]tlrg(, t'(,_i())k ((f ._etmrul('([ lit)v, (+t)mm()lltv
asso(+h_t(,(l wilh lmninnr houtt(hu'v la+(,t's d() tL()t occur. If

this rt,sull L,.-+sttl)>qantial(,(] }iv furtlt(,r (,xp(,rim(qtts. it will

It(, (if I)urth'ular si+.zt;ifi(.anv(, h_ w()rl< su,,h a'< tlt,, l)r('sunt

\V]I('I'(' ':-;()Ill(' {t'..:,stltlll)tion has to })(' Ilia(It' ,ti)()ut I]w llalIlFe

of the shoH_ s.vsl,,nl,_tml (he ,'l,_sulnplion tlml th(,_h,wk

w_ve isa sit_g'l(,x+axu leads Io lit('_l'cal('s| sitnl)lili,'utim_.

The prin,'ipal(liscrupancy iwtween c;d<'tllatu(lpt',>_,_r,,
(listril)uti()ns aml tlt<).<(,m('asur('(l _vitll a t.)rt),_](,l)l l>()tt))(l+tt",-

htv('r st(.tn_, from tlt(' fact that tlt(' sh()rl,: _It+(' m('('t< tlw
uirf()il +<urfa,+(̀ ;it n stali()tt fal'tlitq' ft)l'X\at'<] titan ,'al<'_+h,t(,d.

Tit(, interfer(),.z'runl,; (if li+ur(' 40 xh()w lh;tt ;t <d)<tanliul

l)+)rtiott (if tlt(, f(wv, ar(l shift is (lt£u t()a l)r()_)()_n('('() (.tt)'vat ure
(if tlt(, sh()('l.: w;tv<, near the airf()il. This su_u(,.q._ ;t <'()t))l)+))'i-

son ()f lit(, ('itl(.uhlt('(l slit)el-; l)()`<ili()n_ v, itl) n_)l (rely the

])osili()ns ()h,<(,r\(,(l ul tile airf(fil sttrl't)(.( ` ]tilt al<() +it st)nit'

(listnn('(', sqy , hair (']),)r(I h,)),.z'(1), awuv l'r(,nt tl)(' ,iH'()iI.
'['h(_ ('('stills (If stw]+ a ('onll)nris()n '+;ill( tit(' (]ala f()r ttnt+t)ttlt'tit

i)oun(htrv luvurs _iv<'n in r('f('r(,tlc(' :;7) +t)'t. sh()wtt in li_llr(' 42.

II ('un I)(' s('('n tlmt _h(' ('al<+tthtlt'(l sh()<'l,: l)()+i_i,)n,< vurv witl)

+If. in :I nmntwr _l,i('h paralh.ls th(, <,xl)(,ritn,,)ll;_l l't'+lllt>: tlt

; (+ ().;') ])ill Ii()t lit()'<(' ut tilt' airt+(,il sttt+fa(+e. It is li]ll)<)si

('(,rtai_t that till' (If'tails (If tl)is ])ll<'ll())tl('l)()ll are _l('tttl,

it_llucn(+(.(] l)v s(,l)arati()n nn(] l)v int(,rn<+ti()_+ (If t]w <l)()v]._

w+ive und i)()un(larv la.y(,r, and nr(,, h('n('(', })(,\()n(] tlt(, r(,a('h

(if S(,l)arati(+tt-fr(,(, p()l(,nlinl th('<)ry f,.)t' tt'u)>())li(' lh)w.

.<.if'w('tlw l)r('sstlr( ` _r:t(li('ttts :In({ sh()('].: st r('nfftl) ir)('rt'a.+(' v, ii 1+

nirl't)il (hit.l,:n(,.<s. it Jnight h(' l))('sum('(l thai th(,s(, (ql'(,('ts +v()ut(l

I,(' gi'(,al('t' f,)r lhi('l, uirf<)ils than for ll_in _irf()ils. An imli-
('a.tion (if stt('h :l t r(,n(l is furnish(,(] l)v tht' l)rt'ssttt'('-(list ril)ttti()n

(latt)+ of (16ih('rt (r('f. :'_S) for N+x..(!A ()()()6, ()()()!), 1)()12, 0()15,

an(l 0018 uirf()ils, l;igttr(_ -!:+ shows a. l)lot of the variali()n

+vith _o (If tlt(' sh()('k l)()sition at th(, surfa<.(> of each of these

,(if'foils. If the sh<)('l.: p()siti()ns w(,re ctlan_'ing in a('<'t)t'(l

with the sintil'irity ruh,s of It'ans(:)nic flow lh('(.)ry, lh(,s(,

rt,stdts wouhl all fall (>n a sifts'h, ('urve. It. (!till })e s(,(,ll,

how(,v('r, that this ]_ not tlt(, case an(l that th(, ,dl()(q<. m()v(,s

r('arx;nr({ ;tt'rt)ss lhe chord at t+ slower rate for lho lhi+'k

airfoils than for I]_(, t[tinones. It a H)(:ars , Lherefor(,, tha.t +it

I (,st, the oahmhttt,d shock positions ",+ill <))fly tl_l+('o with those

foun(t (,xl)erim(,t)tally for very t]tin airfoils.

l{es(llts :_ie also ._iven ill reference 3,">,all hOllgh Iio[ fur a Math nurllbt.,r of O.S_, in "++,hi(.h

the Lo n(t: rv layt!r is rm+.d,' [itrbtl}en[ 1),,' a v+in, str(,tche.1 across the test s+,ctic,n one chord
_t e h ,_he:ul of the leading ed_zu. ",Vhen these restlltS are plotlt'd, ill tile form shov,'ll tit figure

39. they fMI I)(ut half way b(,tween the {,:dr:ul,_ted results :rod those r_bt',_in('d with the h,,dt
I nlodel MOlllll(+d OI} a I}l:d('
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It is apparent that changes in tlle shock position will be

accompanied, in many eases, by substantial changes in the

pressure drag of the airfoil, In particular, tile forward shift
of the shock noted for the thick airfoils will diminish the

region of high negative pressures on the r(,ar of tile airfoil,

thereby decreasing lhe drag. These effects will, of course,
be zero until the critical NIa('h number is exceeded, will

increase as the shock moves across the airfoil, and may

diminish serums, hat again as sonic fre[,-stream velocity is

approached, since the actual, as well as calculated, shock

position then approacht's the trailing edge. These effects

would prot)ahly alter the curve for the pressure drag of a

thick airfoil so that it would appear somewhat like that

illustrated in figure 44.
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FmURE 44.--Presumed drag results for a thick airfoil

CONCLUDING REMARKS

The foregoing results are encouraging in that they show
that the introduction of a small number of rough, although

reasonable, assumptions leads to a relatively simple method

for the calculation of pressure distrit)utions on thin circular-

arc airfoils at all Mach numbers up to unity. Perhaps the

most important aspect of the present work is the recognition

of the quadratic nature of the integral equation and the
retention of this feature in the iteration solution. With the

knowledge that aeeeptal)le results can be obtain(,d without

excessive effort, it appears worthwl)ile to re-examine the

approximate solution of the equations with an eye toward

improvement, or elimination, of the simplifying assumptions.

Prol)ably one of the weakest elements of the present method

is the velocity-distribution funetion introduced in equation

(63). This partieular function is used to determine the

entire flow field but, actually, only insures that the velocity

and velocity gradient have the correct value at the airfoil

surface and that the velocity diminishes toward zero at

infinity as 1_ 2. As can t)(, seen bv conlpal'ing the experi-
mental and calculated results shown in figure 45, this func-

tion succeeds reasonal)ly well for circular-arc airfoils. On

the other hand, such a simple function cannot be expected

to give good results for all airfoils. For instance, the present

velocity-distribution function cannot be expected to 1)rovi(l( _
good results for airfoils having fiat surfaces over a substantial

part of the chord (e. g., wedge airfoils, etc.) since it indicates
no attenuation with distance above an element of the airfoil

where the radius of curvature of the surface is infinite. Gull-

strand (ref. 22) has proposed a different velocity-distribution

function which satisfies one more known requirem(,nt, but
it has not l)een established as vet whethm' or not it is suffi-

ciently general to cover all interesting eases.

,_MES AERONAUTICAL LABORATORY

_TATION'AL .ADVISORY COMMITTEE FOR _ERONAUTICS

_IOFFETT FIELD, CALIF., No?,. 19, 1953

0 .5 1.0 0 .5 1.0
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(a) Theory. (b) Experiment.

FIC,_RE 45.---Comparison of theoretical and cxl)_'rim_'ntal lines of constant Cp around a 12-p('rccnt-t hick circular-arc airfoil at a ,Mach number of

0.88. Experimental data from refcr(,n(.e 35 for Reynolds number of 60(1,0(}0. Turi)uh, nt boundary layer.



APPENDIX A

PRINCIPAL SYMBOLS

a

ao

o,*

b

C_

C

('tt

d
E
F

J,
gz

I

k

L

l

kl

Me,
Mo
"It.

P

P

Po

R

F2

T3

S

8

t

Uo

q2, V, W

Y_

Y

speed of sound

speed of sound in the free stream

critical speed of som_d

function defined in equations (63) and (64)

pressure coefflcien t, p-92
_tT2
2 _o

(/_Jok) 1/3

chord

section pressure drag coefficient, --
d

Po Uo2c
2

(_f ok) l/3

(t/c)_3 ca
pressure drag

function defined in equation (67)

function defined in equation (71)

function defined in equations (72) and (73)

function defined in equations (76) and (77)

function defined in equations (57) and (58)

coefficient of nonlinear term of differential equation

for _ (See cqs. (7), (17), (18), and (21).)

2UL-- 1

width of element used in approximating the

chordwise velocity distribution

local Maeh number

criti('al Ma(.h number

free-stream Mach number

inward normal to surface enclosing R

arbitrary point x, y, z

static pressure

free-stream static pressure

region of integration

4i - + +
surface of shock wave

wing semispan

maximum thickness of profile

free-stream velocity

perturbation velocity components parallel to

x, y, z axes, respectively

t"

t_ u

k

k

t_--iw

X

X, y, Z

Z

.y

A

Po

Z

7

a

b

cr

L
LE
l

214o=1
P
S
TE

'u

W

Cartesian velocity components on the two sides of

a shock wave, with fi being parallel to the flow

direction ahead of the shock

_-2
b

Cartesian coordinates where x extends in the di-

rection of the free-stream velocity

z

Oy
0z
ordinates of wing profiles

kUo Z

4V-- M_
ratio of specific heats, for air _,= 1.4

difference between values of quantity on the upper

and lower sides of the xy plane

variables of integration corresponding to x, y, z

1 --21//o _

1--M 2

-_-Jc(tlc)]m
free-stream density of air

surface enclosing volume R

kUo t

_3 c

velocity potential
perturbation velocity potential
k

1 _' (_)

Subscripts

values ahead of shock wave

values behind shock wave

conditions associated with the critical Mach

number

values given by linear theory

leading edge

values on the lower surface of wing or wake

values at 214o----1

values at arbitrary point P

values along shock wave

trailing edge

values on the upper surface of wing or wake

values at the wing surface

39



APPENDIX B

DISCUSSION OF CERTAIN PROPERTIES OF THE QUADRATIC ITERATION METHOD

INTRODUCTION

The present results art, obtained using an itera(ion process
which differs from that of previous workers in that the

quadratic nature of the int,,gral equation is recognized and

rctain(,d (hl'oug]mut tile atmlysis. This app(,ndix i._ (',)n-

cerne(l with an investigation of certain properli(,s of (h(,

two m(,(.ho(ls and a discussion of the applicability of each

method to transonic-flow prol)h,ms. Certain other prol)h,ms

will be avoidt,d l)y confining attention to symmetrical non-

lifting wings with sufih'h,n(ly smooth cntri(,s at. leading and

trailing (,dg(,s that there are no stagna(ion points. M(,thods

of han(lli)ig s(agna(ion |feints are discussed ill rcfer(,nc(,s 39
and 40.

The fundamenhfl r(,lat.ions f,r the following discussion,

(,qua(ions (41) an(l (43), can be wri(ten in the following more
abbreviate(l form

u = _IL-- L (B 1 )

_? /2 (B2)
u :ULq '2 2

wh(,r(, L and 1._ refer to the integrals over I: att(l S in (,qua-

lions (41) '_))(I (43), respec(ively, and 7*r. is (he lincar-th(,ory

solution given l)y equation (42). As is evident from the

derivalion in the text, equa(ions (BI) and (B2) are (olallv

equivalent since the falter i_ (h,riv('d fr()m the form(,r l)y

partial integration such that

L, )_2
I, = ,2-- g (B:_)

Sine(, mctho(Is for inverting, or solving, no)dinear integral

equations such as equations (BI) and (B2) 'u'(' not known,

the itrcscn(, a)mlysis, in common with many pr(,vious analy-
ses, s(,(,ks an approxhnate solution by ileration. Th('sc

methods t)roc('('d, ill ff(,n(,ral, })y su})sli(uling a ].:)town
function for'_ into th(' integrals, iuh,grating and solving t]lC

resulling algebr'fic equation for a new approximation for 7/,
which is i)l turn substituted into Ill(, int(,g)"fls, etc. The

proc(,dure employed in (he present a)m]ysis d ifl'ers from (ha(

traditionally eInI)loycd in that it is I)as(,d orl equation (B2)

rather than equation (B1). The most. ol)vious different(,

between the two procedures is that Ill(' algel)raic equation to
solv(' fro" the )taw _'_is linear in the traditional analysis and

quadratic in tile present amllysis. Although solutions of

(,(ptations (B1) and (B2) must actually b(, identical, it is
shown in equations (91) through (94) that (his is not always

t lw case for the results indicated 1)y a partially comph't(,d
iteration calculation. Since the ]in('ar iteration metho(l is

acccI:)te(t universally for purely sul)sonic flow, and by some

for mixcd flows, it is important that we examine thi, relation
between the results of tlt(, two procc(hu'es ill great(,r detail.

4O

SHOCK=FREE FLOW

Slmck-fv(,e flow will be consi(h'r(,d firs(. Tile i)_t(,gra[s L

an(l [2 at'(' l]wn simply

l 10 2 7,>-') -

1>,

L::::'2 4,= _ oP (;::I
R

and will I)(, (h,sig)m((,(l I_(_':) au(l 12(_-') I() ("dl atl(,nli(), t()

Ill(, fa('( thai (h('y involv(, lhe s(luar(, ()f _-. Th(. ]ilwar-th(.(lry
solution _7Lhas (h(, form

F,.=:Ta, (7, _, T)=.,7 (B6)

where a_ is a known function. Both the Iitwar at,l quadratic

itcra(ion proct,duros can l)c starwd by h,tting K--0 qnd desig-

nating this aI)proximation I)y u'0.

The resulls rot" successive, ileratiou stt,1)s using th(, linear

iteration metho(I are determined lly solving

_,+1=171. I_ (TL/) (BT)

In thi,_ way we el)lain

"770: 0

5, _i. .,r

_=: _L I,(5/)=';TL--reI_(a, e)-:a_74 a=,7-_

_3 : "_! .... [I(-H'Y) : (II'T @(I2 _2 _ ¢I3T3-" 0(71)

/t

_,, ==_', a,,7" + 0(7" ,1) <Bs)

where ,:,t,, :a,,(7, _, F) ar(, fun<'ti()ns of the wing g(,()m(,try,

and ultimately therefor(, of at. This l)ro(w(lurc has tile

inleresting property (hal one and only one addilional term

in the power series expansion for _7 is detm'minc,l in ils final

form with each iteration step. That is

_,, F,__q-a,,r"+O(7 "+_) (B9)

Nole thai a singh, expression is el)hiluM for all Math num-
1)ors and thickn(,ss ratios, and that (he magnitudes of tiles(:

parame(ers are reflected soh,ly in the value for 7. 3'he
l)rin(:il)al (|u(,stion concerns the rang(, of (.onverg(,nce of the
series. It, is evident that the series (.an)lot eonlinue Io con=

verge as .1Io approae|ws unity l)(,(.aus(, r a l)proa('hcs infinity,

l)ut tlt(, l)rceise bound on tilt' ra(lius of convergent(' is (lifli(_ult

to establish at this point.
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The results for successive iteration steps using the quad-

ratic method are determined by solving

Thus

whore

and

-2 __UL ]_( 2_n+l '//,:)+I n2)

=1 :_:t- x,,

X. = 2_z-- L 072)

0310)

(Bll)

if _,+1 is to remain real. The minus sign is associated with

local velocities that are subsonic and the plus sign with those

that are supersonic. This result can be made more nearly

comparable with the power series representation provided

by the linear iteration method by exi)anding the radical of

equation (Bll) under the assumt)tion that Ix,l<1, wherehy
we obtain

1 1

1(1)(3) a, 1 [1"\

Consider first pro'ely subsonic flow. Then successive

iterations yield the following results

_0=0

_, = _ + o(_L_) = a,T + o(7_)

2 _2

=a17-}-a:7'-'+0(73)

• , , , ......... , ° • • . , ........

71

_.= _,a,7"+()(7 "+t) (B13)
n=l

where the a_ have the same values as in equation (BS).

This series and that given by equation (BS) are the same

since tiwy can be made to agree to any arbitrary number of
t(,rms. Thus the two methods lead to the same result for

purely subsonic flow. Whereas there is some doubt about

the range of convergence of equation (B8), it is clear that

equation (B13) only applies to purely subsonic flow. This

is evident, first of all, from the use of the minus sign in equa-

tion (Bll). Moreover, since the series only converges for

]x,,l<l, the largest value for =awhich can be represcnted by

equation (B13) is unity. Since =uequals unity when the local

velocity is sonic, this result can be interpreted as indicating

that equation (B8) converges for purely subsonic flow, but

diverges for mixed flow.

There also exists a range in whicb the expression given in

equation (}512) applies using the plus sign for certain regions

of the flow field. The resulting series expansion for _, how-

ever, does not lead to that given by equation (BS) or (B13),

inasmuch as tim first term is independent of 7.

FLOW WITH SaOCK WAVES

Althoug|t many of the general notions descrit)ed for shock-

free flow carry over into the analysis of transonic tlows with

shock waves, certain changes must t)e inlroduced. It is

clear, for instance, that the linear iteration method cannot

be used with the starting _ distribution taken as zero or _L,

because then equation (BS) would 1)e reproduced and no

discontinuities or shock waves wouhl ever appear. On the

other band, it might seem reasonal>h, to suppose that a

successfifl iteration calculation could 1)e accomt)lished using
a starting _ distribution containing a sho(.k wave and esti-

mated to be close to the correct solution. This is, in fact,

what is done in the present analysis, t)ut using the quadratic,

rather than linear, iteration method. Although, as sho_]l
in the preceding section, there is no essential difference be-
tween the results of the two iteration metlmds in the sub-

critical range, the quadratic method emerges as definitely

superior when the free-stream Ma('h number at)preaches
unity. Its decisive advantage lies in the fact. that small

errors in the estimated _ distribution lead only to finite errors

in the calculated _ as .lI_ approaches unity, whereas infinite

errors can result from the calculations performed by the

linear iteration method. The means l)y which small errors

can be magnified in the linear iteration process can be seen

by examining equation (B1) together with the definition of
and _'L.

k k

_=_ u; _L--=_ U,.

Thus equation (B1) can be rewritten as follows:

where

- /32
I1= F I1

Now, as Mo approaches unity, u remains finite but uL ap-

proaches infinity. The largest, values of u_ are attained on

the airfoil surface where UL aPl)roachcs infinity as 1/_ in
two-dimensional flow and In _ in three-dimensional flow.

This means, in the linear iteration method, that the desired
solution u must be determined from the small difference be-

tween two large numbers. Since -?z is only evaluated ap-

proximately in an iteration method by substituting a function

for u which differs from the exact function by a finite amount,
it is apparent that very large or infinite errors may result as

:_/o approaches unity. On the other band, equation (B2),

which is used in ti_e quadratic iteration method, can be
rewritten as follows:

where

_-u-u_= u_-_

Now in this case the term containing u_ becomes indefinitely

small compared with u z as the Mach number approaches

unity, and only finite errors result when an approximation
is substituted for u in 12.
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